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Abstract—The computer networking community has been
steadily increasing investigations into machine learning to help
solve tasks such as routing, traffic prediction, and resource
management. The traditional best-effort nature of Internet con-
nections allows a single link to be shared among multiple flows
competing for network resources, often without consideration
of in-network states. In particular, due to the recent successes
in other applications, Reinforcement Learning has seen steady
growth in network management and, more recently, routing.
However, if there are changes in the network topology, retraining
is often required to avoid significant performance losses. This
restriction has chiefly prevented the deployment of Reinforcement
Learning-based routing in real environments. In this paper, we
approach routing as a reinforcement learning problem with two
novel twists: minimize flow set collisions, and construct a rein-
forcement learning policy capable of routing in dynamic network
conditions without retraining. We compare this approach to other
routing protocols, including multi-agent learning, with respect
to various Quality-of-Service metrics, and we report our lesson
learned.

Index Terms—Routing protocols, Machine learning algorithms,
Reinforcement learning, IP networks, Network Management.

I. INTRODUCTION

Machine learning (ML) has recently seen many applications
within computer networking. Many ML techniques and algo-
rithms have been proven to enhance performance for many
tasks, ranging from network traffic prediction to resource
management and anomaly detection. One of the most prolific
areas of ML research in recent years has been Reinforcement
Learning (RL). Since the authors in [1] demonstrated how deep
neural networks could be trained to approximate a Q-function
efficiently, RL became a topic of significant prominence.
Since then, RL has been in the spotlight due to a slew of
recent artificial intelligence breakthroughs, including defeating
humans in games (e.g., Go, chess, StarCraft), self-driving
cars, smart-home automation, and service robots, to name a
few applications. Computer networks in general, and packet
routing problems in particular, have also been solved using
RL, although with a single agent to learn the environment and
cope with the lack of performance awareness of commonly
deployed routing protocols based on Dijkstra and Bellman-
Ford algorithms. Despite all recent RL achievements, many
simple tasks can still elude a single agent. The main limitation
of existing single-agent RL-based routing is that the agent has
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to implicitly learn the topology through a centralized strategy.
While such a strategy may work for logically centralized
Software-Defined Networks, it may be impractical for many
other computer networks. To overcome this limitation, we pro-
pose to tackle the routing problem using Graph Convolutional
Networks (GCN) and distributed learning approaches, such as
multi-agent RL.

In multi-agent RL, agents share a joint objective function
and can cooperate to learn faster, safeguard privacy to a certain
extent, and rely on a less failure-prone algorithm, overcoming
some of the limitations of a single RL agent. Both GCN and
multi-agent RL help tame the complexity of creating a fully
distributed routing learning strategy that balances picking short
and less congested paths based on local observations and being
informed about global and dynamic network states.

Recent literature has shown different techniques to embed
RL models into routing algorithms, achieving promising re-
sults. Nonetheless, no prior solution considered the resiliency
against network changes as a primary concern. A practical
example is the failure of one or multiple links or nodes in the
network, which leads to unwanted and unexpected topology
variations. If such an event occurs after the training phase
has been completed, the RL model should be retrained from
scratch to learn the new change in the environment.

In this paper, we approach the problem of RL-based routing
with resiliency in mind. In particular, by resiliency in this
work, we mean the ability to dynamically adapt to computer
network changes without the need for retraining the RL model.
Our results can be applied to Wide-Area Networks, within
intra and inter-domain routing (e.g., iBGP and eBGP), and
to Software-Defined networks. In some cases, e.g., at network
edge [2], to fine-tune traffic engineering policies, it is desirable
to overwrite classical interior BGP routing rules, such as
Equal Cost Multi-Path (ECMP) and Open Shortest Path First
(OSPF). In other cases, a distributed approach is the only
viable solution [3].

In particular, in this paper we present the design, imple-
mentation, and evaluation of two resilient RL-based routing
schemes with different learning algorithms, a single agent,
and a multi-agent solution. Both approaches show benefits
when dealing with drastic network topology changes. The
single-agent RL routing algorithm leverages Graph Neural
Networks [4] to minimize retraining needs. Instead, the multi-
agent RL solution is based on Deep Q-Networks, where feder-
ated routing agents cooperate to achieve a shared optimization
goal.

The idea behind our Single-Agent Graph Convolutional Net-
work algorithm (SA-GCN) is to operate directly on network
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traffic datasets encoded in a graph format, instead of a tradi-
tional vector and matrix data representations. The advantage
of training a RL routing system whose input is a graph lies
in the ability to train such policy on any network topology,
represented by a computer network adjacency matrix. This
advantage naturally permits a RL policy (i.e., a given reward
function) to operate in any topology and learn from changes
in routing and congestion events, without having to retrain
the neural network. In our Multi-Agent routing with Deep Q-
Network algorithm instead (MA-DQN), each agent makes its
routing decisions locally.

We found that when RL agents learn about the network
topology explicitly, the training time significantly improves,
not surprisingly. This is because, by compiling the network
topology into the RL agent’s state space, the machine learning
model is able to handle changes in latency and bandwidth more
efficiently. We also found some surprising results by evaluating
several RL models. In particular, we test their ability to
optimize Quality of Service (QoS) computer networks metrics,
such as latency and bandwidth, while considering different
network topology factors (i.e., size, number of competing
flows on the same physical or virtual link, congested links,
and link and node failures scenarios).

We report that our RL-based algorithms outperform the
standard routing algorithms with an overall improvement
evaluated with different metrics. Furthermore, we compare
our solutions and show that our MA-DQN routing algorithm
can achieve the optimal policy much faster than our SA-GCN
model. Nonetheless, one of the major drawbacks of MA-DQN
is that the model cannot easily be translated to other topology
configurations, as such topology is encoded into the neural
network model itself, whereas the SA-GCN algorithm results
in a more adaptive solution with regards to topology changes.
In summary, we analyze and dissect the application of RL on
the routing problem as follows: (i) reporting the pros and cons
of using single-agent and multi-agent approaches individually;
(ii) comparing them in terms of network change resiliency
and retraining needs; (iii) discussing our lesson learned and
leaving several insights regarding the overall optimization
process when dealing with routing with network topology
changes; (iv) comparing their performance against the existing
standard and RL-based routing algorithms.

The rest of the paper is structured as follows. Section II
highlights the state-of-art RL-based solutions in routing prob-
lems, focusing on single and multi-agent approaches. Sec-
tion III formulates our problem more formally and reports
the mathematical model for both GCN and DQN-based al-
gorithms. Section IV reports the results achieved with an
extensive evaluation of performance in terms of QoS metrics
and gives a detailed comparison between our algorithms and
different baselines. In Section V we summarize our work and
the take-away messages.

II. RELATED WORK

Routing protocols pose challenging requirements for ML
models. Examples of such challenges include the capacity to
deal with and scale complex and dynamic network topolo-
gies, the ability to learn the correlation between the selected

path and the perceived QoS, and the ability to forecast the
repercussions of routing decisions. Traditional RL algorithms,
particularly Q-learning, have been used to route traffic in a
variety of network scenarios, given their scarce compute and
communication needs and their ability to identify an ideal
solution and adapt to changes in the environment. Different
techniques to apply RL to the traffic routing problem have
been proposed in literature. See e.g., these examples [5, 6,
7] or this recent survey [8]. These techniques differ in terms
of (i) learning capability distribution and (ii) the amount of
collaboration among numerous learners. Different techniques
lend themselves better to specific network topologies and util-
ity purposes. The presence of a central node —the controller in
Software-Defined Networks (SDN) and the sink in Internet of
Things (IoT) networks, respectively — allows for centralized
learning in SDN [9] and IoT. Routing in IoT, on the other
hand, necessitates decentralized RL [10, 11], with the learning
capability dispersed across the routing nodes. In the rest of
this section, we focus on solutions that most closely match
our contribution, with respect to two dimensions: Single-Agent
Q-learning solutions for traffic engineering and routing with
Multi-Agent learning.
Single-Agent Deep Q-learning for Traffic Engineering.
A few recent solutions have proposed employing Deep Q-
Learning to tackle traffic engineering problems. Most of these
approaches investigated the use of RL specifically for real-
time routing optimization [12] congestion control [13], and
resource management [14]. The authors in [15] implement
a deep-RL solution to improve the performance of baseline
TE algorithms of an SD-WAN-based network in terms of
service availability. Specifically, they evaluated three deep-
RL methods: Deep Q-Learning, policy optimization, and TD-
λ (Temporal-Difference value function algorithm). Results
show that Deep Q-Learning achieves better performance with
respect to the other deep-RL algorithms and the baselines in
terms of the percentage of time in which the service is up.

In [16], a deep Q-Learning is used to specifically build
a greedy online routing algorithm, improving different QoS
metrics in SDNs. They implemented a greedy online QoS
routing method based on dueling deep Q-network with pri-
oritized experience replay, proving that this solution can
learn the network topology to solve multiple QoS metrics
optimization tasks. The approach reduced delay, cost, and loss
while maximizing bandwidth, outperforming existing learning-
based methods. Differently from all these sound solutions, in
this work we investigate the application of GCNs to Deep
Q-Learning for a QoS routing optimization problem.
Routing with Multi-Agent Reinforcement Learning. Al-
though previous studies of DRL-based techniques have
demonstrated the ability to deploy routing configurations in
dynamic networks autonomously, some researchers have ar-
gued that centralized controller approaches are likely to face
challenges in large-scale networks due to the difficulties of
collecting widely distributed network status in real-time.

Multi-Agent Reinforcement Learning has rapidly become
an important research direction. A few authors have proposed
bringing these approaches to optimize routing protocols. See
e.g., [17, 18, 19]. In particular, [19] proposes a multi-agent
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reinforcement learning framework for adaptive routing in
communication networks, which takes advantage of both the
real-time Q-learning and the actor-critic methods.

Pinyoanuntapong et al. [20] formulated the traffic engi-
neering decision-making problem as a Multi-Agent Markov
decision process (MA-MDP) instead of a Partially Observable
Markov Decision Process (POMDP). Similar to these ap-
proaches, we use Q-routing technique for traffic-aware routing,
but our solution uses a fully distributed multi-agent Deep Q-
Learning Reinforcement Learning algorithm to deal with QoS
requirements and topological changes.

III. MODEL AND BACKGROUND ON GCN AND MA-DQN

In this section, we detail the design of our single-agent and
multi-agent routing approaches. Specifically, we describe the
RL model and define the state and action space along with
the selected reward functions both for GCN-based algorithm
(Section III-A) and DQN (Section III-B).

A. Single Agent GCN Policy Background and Settings

While Convolutional Neural Networks (CNNs) have per-
formed well with structured data, they cannot be used for
unstructured data such as graphs. In these situations, Graph
Convolutional Neural Networks (GCNs) have shown great
promise. GCNs use convolutional operations to extract features
from nodes and edges in a graph. The main idea is to
propagate information from neighboring nodes to update the
representation of each node in the graph. This is achieved
by defining a convolution operation on the graph, where the
filters are learned using backpropagation. The filters capture
local patterns in the graph and are used to update the feature
representations of the nodes. We leverage GCNs as the policy
network for our DRL algorithm. A policy network is a type of
neural network that takes in the current state of an environment
as input and outputs a probability distribution over actions that
the agent can take in that state.

The application of RL-based approaches to routing have
been criticized for the inability to generalize across different
topologies used for training. If there are any changes in the
network topology, retraining is required. This restriction has
mostly prevented the deployment of RL-based routing in real
environments. The principal benefit of incorporating Graph
Convolutional Networks (GCNs) into the policy network
lies in its capacity to deliver high performance even when
operating on previously unseen network topologies. This is
primarily due to the fact that the topology of the network
is explicitly provided as input to the policy network. In our
work, each episode of our RL algorithm is trained on a new
network topology that the model has not encountered during
the training phase.

As a network experiences congestion when several flow
sets coexist on the same underlying path, we address this
problem by learning how to minimize the coexistence of flow
sets as long as alternative routes exist. We define such flow
coexistence as a collision, when two or more flow sets coexist
in the same forwarding application process, i.e, a (virtual)
router or switch, simultaneously.

Since an action that an RL agent chooses influences subse-
quent actions, we model the problem as a Sequential Decision-
making Problem (SDP). The problem instance in our study is
characterized by the tuple: M =< S,A,R, γ >, where S is
a finite set of states, A is a finite set of actions, R is the
immediate reward, and γ is the discount factor. We denote f
as the number of flow sets, and N as the number of nodes
in the system. In order to optimize the policy network output
(i.e., the probability distribution of actions), we employ an
”on-policy approach”. Specifically, we use the PPO (Proximal
Policy Optimization [21]) reinforcement learning algorithm to
facilitate stable training and prevent divergence.

We next describe each element of the Sequential Decision-
making Problem tuple in detail.
State Space. Let S denote the finite set of states that are
admissible in the environment. An arbitrary state contains
three parts. The first part is the adjacency matrix of the
network. The second part is a 2-column matrix containing
a one-hot encoding of the source and destination nodes of
the flow set to be routed by the GCN. The third part is a
f × 2 matrix where each layer of the matrix is a similar 2-
column matrix but of a competing flow set in the network. It
is important to clarify that the state does not contain what path
other flow sets are taking across the network but merely their
source and sink nodes. If there are n nodes and up to f other
flows, there are (f + 1)× n2 possible states.
Action Space. Let A denote the finite set of actions that
the agent can take. We construct the action space as a one-
hot vector the size of the highest degree node in the graph.
Having the action space be dim(G) as opposed to |E| offers
a significant action space compression. When the agent is at a
node i, given that dim(ni) < dim(G), only the first dim(ni)
output indices are considered when sampling from the policy.
RL Reward Functions. Let R(s, a) denote the immediate
reward (or expected immediate reward) received for selecting
an action (routing decision) a ∈ A at a state s ∈ S which
causes the state transition s → s′, and R(s, a) ∈ [−1, 1]. A
dimension of our GCN-based routing policy evaluation is an-
alyzing reward functions and their influence on the strength of
such policy concerning what it was supposed to optimize. The
first reward function considered is shown in Equation 1. This
discrete, sparse reward function, while simple, is deceptive.
The goal of RL algorithms is to select actions that will yield
the largest reward by the end of the episode and attempts to
achieve the largest reward in as few actions as possible. If an
agent were to use this reward function to learn to route within
a network, the agent would learn how to get to the destination
node in as few hops as possible while oblivious to each link’s
link capacity and delay.

R(s, a) =


−1 could not reach destination
1 reached destination
0 still in transit

(1)

The natural second reward structure is defined in Equation 2;
in such equation, r is the proportion of the best arbitrary QoS
metric possible to the QoS realized by the path the agent chose
from source to destination.
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R(s, a) =


−1 could not reach destination
r reached destination
0 still in transit

(2)

For routing with other flow sets coexisting in the network,
r is the ratio between the measured metric and the optimal
QoS metric (Equation 3). If we consider end-to-end latency
as a metric, C1 represents the measured latency on a given
path taken into consideration as an RL policy, and C2 is the
latency of the shortest path when no other flow sets coexist in
the network. If instead we wish to optimize over bandwidth,
C1 and C2 represent the bandwidth available on the route
considered and the best bandwidth that can theoretically be
achieved when no other flows are present in the network:

r =
C2

C1
. (3)

The agent operates in an environment with three inputs:
(1) an adjacency matrix representing the connections between
nodes in the network, (2) a two-column matrix indicating the
current node and the destination node, and (3) a matrix of size
numflows×2×dim(G) representing the start and endpoints
of other flow sets in the network, which are one-hot encoded.

The first input is processed by a graph convolutional net-
work (GCN) specifically designed to handle graph-structured
data. The GCN architecture is inspired by traditional convo-
lutional networks and consists of a graph convolution layer,
a rectified linear unit (ReLU) activation function for non-
linearity, and a graph pooling layer to aggregate information.
This implementation is described in detail in the GCN imple-
mentation [22].

The second and third inputs are processed by a feed-
forward network with two hidden layers of size |E|

2 with
ReLU activation. The output of the GCN is flattened, and the
other two sub-networks’ outputs are concatenated lengthwise.
This resulting vector is then propagated through another sub-
network, a feed-forward neural network with three hidden
layers of size |E|

2 . The last layer of the policy has dim(G)
nodes. The value function is another feed-forward network
with three hidden layers of size |E|

2 with ReLU activation,
and the last layer contains one neuron.

Reward Engineering and Considerations over Large Net-
works. While Equation 2 would properly train an agent to
optimize an arbitrary QoS metric r, the sparse nature of non-
zero rewards in the functions is undesirable. Mathematically,
as the average eccentricity of a network increases, the RL
agent’s horizon organically grows, making the credit assign-
ment of actions increasingly difficult. Our reward structure
is semi-sparse, as the agent is given a small reward when it
successfully moves closer to the destination node and receives
a much larger reward at the end of the episode. Naively, if the
agent takes the shortest path to the destination node, it would
receive positive rewards at every timestep. However, the final
reward would not be as significant if the agent collided with
other flow sets along the way.

Another challenge when operating on large networks is
the use of ϵ − greedy exploration, namely a strategy for
balancing exploration and exploitation by randomizing actions.
With random exploration, a packet is increasingly unlikely
to stumble upon the destination node, therefore delaying the
reception of a non-zero reward, hence prolonging the learning
phase. To address such limitations, we consider the following
more specific reward function (Equation 4):

R(s, a) =


−1 could not reach destination
r reached destination
0.1 moved closer to target
0 otherwise

(4)

B. Multi Agent DQN Background and Settings

One of the first approaches to Deep Learning from high
dimensional input is outlined in [1]. Their model, a Convolu-
tional Neural Network trained with a variant of Q Learning,
could surpass some of the previous approaches on the Atari
2006 games. The authors in [23] took this approach further:
they used reinforcement learning combined with deep neural
networks to develop a deep Q-Network (DQN).

While tabular methods come with convergence guarantees
and work well with smaller state-action spaces, we use neural
networks and Deep Reinforcement Learning as we aim to
develop a more flexible and scalable approach that can be
easily adapted to larger and more complex problems. Deep
RL provides a framework that allows us to handle these more
challenging future scenarios without significant alterations to
the underlying algorithm.

Using neural networks for RL can cause instability during
training. This instability is attributed to correlations caused
by sequences of observations, minor changes to the neural
network that can change the policy, and correlations between
the action and target values [23].

To counter these issues, we use the following techniques
with DQN to stabilize training. First, we employ a replay
buffer in our algorithm that keeps track of the (s, a, r, s′, a′)
tuple. A batch of these tuples is sampled randomly to adjust the
neural network, preventing data correlations. Secondly, DQN
uses an iterative update that periodically adjusts action values
to the target values to avoid correlations.

The computer network in which the RL agent operates is
described by a standard graph G(V,E) where V represents the
set of routing nodes and E represents the set of transmission
links. Each transmission link contains some traffic that we
simulate. The goal is to find the path that minimizes the travel
time between each source (s) and destination (d).

Each node acts as an independent agent in the MA-DQN
model. Each agent has a separate neural network and makes
routing decisions locally.
State Space. Each agent receives the destination as a one-
hot vector with size equal to |V |, i.e. the number of routers.
The state space remains consistent across all agents for each
episode.
Action Space. We also create the action space as a one-hot
vector whose size is equal to the number of agents’ neighbors.
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The agent selects a neighbor at each time step t after looking
at the state space.
Reward Functions. We employ a dense reward function to
route in larger networks. The agent receives either a positive
or a negative reward for every routing decision taken based on
Equation 5-6, We find that this structure significantly increases
the rate at which the model converges. We also discover that
the only factors that significantly alter the model’s perfor-
mance are the positive and negative rewards’ relative sign and
magnitude differences. When the magnitude of the negative
reward is greater than the magnitude of the positive reward,
the model avoids making those judgments and its behavior is
more strongly reinforced.

Therefore, if the packet is more than one step away from
the destination:

R(s, a) =

{
r packet moved closer to the destination
−.75 otherwise,

(5)

where r represents the time difference between the current
node and the previous node in terms of packet delivery time
to the destination. When a packet can reach the destination
using a single link, the reward is defined as:

R(s, a) =

{
1.5 best link to destination chosen
−.75 sub-optimal link to destination chosen

(6)

The agent is given a one-hot encoding of the destination as
input. A feed-forward neural network with a ReLU activation
receives the input after that. The size of the input layer is
the same as the number of graph nodes. Then, there are two
hidden layers with a combined size of |V |

2 , followed by an
output layer with a size equal to the number of neighbors for
the agent.

The DQN algorithm that we used can be found in Algo-
rithm 1. We first initialize the replay buffer and the action and
target Neural Networks for each agent (lines 1-4). For each
episode, we randomly determine the source and destination
nodes. We then assign the packet to the agent at the source
(line 8). For each epoch in each episode, the agent observes
the state s at timestep t. The agent then selects an action a
based on ϵ. The agent chooses either a random action or the
best action a∗ based on the following maximization problem:

a∗ = argmax
a

Q(st, a; θ),

depending on the value of ϵ (lines 9-11). The value of epsilon
decays as the episodes pass so that the agent can explore at
the beginning of the training and exploit the best-known values
toward the end. We find that the rate at which ϵ decays plays
a significant role in the model’s performance. If ϵ decays too
fast, the model converges to a poor value. If the model decays
too slowly, the model never converges. Once the action is
selected, we pass the packet to the neighbor based on the
selected action and observe the reward rt and the next state
st+1 (lines 12-13).

Algorithm 1 Deep Q-Network Running on Routing Agent

1: for agent i = 1, N do
2: Initialize replay buffer Di = ∅
3: Initialize action-value function Qi with weights θi
4: Initialize target action-value function Q̂i with random

weights θ−i = θi
5: end for
6: for episode = 1, M do
7: for each decision epoch t do
8: Assign current agent n current packet p
9: Observe current state st

10: Select and execute an action

11: at =

{
a random action, with probabilityϵ
argmaxa Qn(st, a; θn),with prob.1− ϵ

12: Forward p to next agent vt
13: Observe reward rt and next state st+1

14: Store transition (st, at, rt, st+1) in Dn

15: Sample minibatch (sj , aj , rj , sj+1) from Dn

16: yj =

{
rj , if episode terminates at step j + 1

rj + γ maxa′Q̂n(sj+1, a
′; θ−n ), otherwise

17: Grad. descent on (yj −Qn(sj , aj ; θn))
2 w.r.t. θn

18: Every C steps reset Q̂n = Qn

19: end for
20: end for

We store the transition (st, at, rt, st+1) in the agent’s re-
play buffer (line 14). We then randomly sample a batch of
transitions (sj , aj , rj , sj+1) from the agent’s replay buffer
and calculate the expected value yj from the “older” target
network (lines 15 - 16). We then perform gradient descent on
(yj−Q(sj , aj ; θ))

2 with respect to θ for the agent to optimize
the weights of the neural network (line 17). Periodically, the
weights of the target Neural Network are reset to the “newer”
Neural Network (line 18). By taking samples of transitions,
we can avoid correlations in training. Additionally, this replay
buffer technique is more efficient as each step can be used in
many neural network updates [23].

IV. EVALUATION

In this section, we evaluate both proposed algorithms,
single-agent via GCN and multi-agent via DQN, with respect
to Quality of Service (QoS) metrics for traffic engineering.

In particular, in Section IV-A we describe our multi-agent
evaluation settings. In Section IV-B we discuss the evaluation
results of the multi-agent algorithm, showing how it outper-
forms two widely deployed algorithms, Open Shortest Path
First (OSPF) and Equal-Cost Multi-Path (ECMP). We also
discuss a few lessons learned from reward engineering and
the impact of over-training the RL algorithm in our case. In
Section IV-D, we discuss the evaluation of the centralized
routing solutions using GCN, showing interesting and surpris-
ing results on its ability to learn not only how to route, but
also on how to avoid collisions (i.e. coexistance and hence
competition) with other flow sets.

The MA-DQN model is able to train faster than SA-GCN
and its ability to re-train can be used over new topologies
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with different parameters. Indeed, we found that MA-DQN
performs a fast re-training when there are small changes in
topologies. The MA-DQN model is also able to learn an
optimal policy without explicit knowledge of other flows in
the network.

A. MA-DQN Evaluation Settings

In all our experiments, we captured transmission and queu-
ing delays, and we considered network topologies following
either Waxman (random-biased) or Barabasi-Albert (preferen-
tial attachment) topologies. Our network configurations consist
of three sizes: 50 vertices and 100 edges (50V, 100E), 100
vertices and 200 edges (100V, 200E), and 150 vertices and
300 edges (150V, 300E). These topologies were generated
using the BRITE topology generator [24]. We used a uniform
bandwidth distribution from 0 to .99 Mbps. For the Waxman
topology [24], we used a 0.15 alpha parameter and a 0.2
beta parameter (Waxman-specific exponents), given in this
equation:

P (u, v) = αe−d/(βL), (7)

where P (u, v) is the probability of having an edge between
nodes u and v, 0 < α, β <= 1, d is the Euclidean distance
between nodes u and v, and L is the maximum distance
between any two nodes. We simulate several traffic scenarios
in static and dynamic topology conditions after generating
these topologies. Each link has a bandwidth as generated
by the BRITE topology generator before the simulation. We
simulate traffic by generating flows that take the shortest path
from randomly generated source-destination pairs following a
uniform distribution. For each packet on a link, we reduce
the corresponding residual capacity and increase the latency
proportionally to the flow packet size. In all our network
simulations, we do capture propagation delay as well as queue-
ing delay. Unless otherwise specified, we use a replay buffer
size of 5000 — the memory that stores state-action tuples of
the RL algorithms, a batch size of 192, the RMSprop [25]
optimizer — RMSprop maintains a moving average of the
squared gradients thus resulting in an adaptive learning rate.
We use the default learning rate of 10−2. All experiments
for the MA-DQN were performed on a Dell Inspiron 15.
Convergence times for the MA-DQN model w.r.t to topology
size are as follows: a) (50N, 100E) took 5 minutes, (100N,
200E) took 10 minutes, (150N, 300E) took 17 minutes.

B. Evaluation of Multi-Agent DQN

1) Multi Agent DQN based policies outperforms OSPF and
ECMP: In this section, we compare the latency and bandwidth
of converged DQN policies, OSPF, and ECMP. Figures 1(a-c)
and 2(a-c) compare the latency of the aforementioned policies
on networks of various sizes and topologies. Figures 1(a-c)
and 2(a-c) show that Multi-Agent DQN-based policies learn
near-optimal routing policies with networks of sizes up to
(150V, 300E). Our results presented in Figure 3 demonstrate
the ability of the MA-DQN model to balance bandwidth
effectively, consistently outperforming OSPF and ECMP.

One of the most significant results from our experiments
is the model’s scalability. We find that the multi-agent model

can outperform classically adopted routing protocols such as
OSPF and ECMP even on large networks. From Figures 1(d),
2(d), 5 (a-b) we observe that the training time scales well with
respect to the topology size, and from Figure 5 (c) we observe
that the MA-DQN is able to minimize latency across various
topology sizes and types. We attribute this result to the fact
that each agent is responsible only for local routing decisions.
This means that such an agent does not need to receive the
current location of the packet in the state space, thus reducing
the size of the inputs to the model. Our application of a dense
reward function also plays a significant role in performance.

2) Impact of Retraining Needs: The present set of experi-
ments aims to investigate the performance of a model when the
network topology changes, specifically when nodes and links
become unavailable. The objective is to comprehend how well
the model adapts to these alterations and to assess whether
adjusting the exploration-exploitation balance could improve
the model’s performance in such scenarios.

To simulate topology changes, we randomly remove a per-
centage of nodes and links from a 50-node network generated
using the Waxman topology model after the RL model training
had reached convergence. For clarity, the average performance
over 20 runs is plotted in Figures 4(a-b). Similar results are
obtained on the Barabasi-Albert topologies.

Before training or testing the model with a source-
destination pair, we verify if a valid route is available. When
a valid route is unavailable, sampling is continued until a
connected pair is found. After training the model, we route
2000 packets for evaluation. However, in some cases, heavy
reductions of nodes result in a topology change too large for
the MA-DQN model to relearn an optimal policy. To address
this limitation, we adjust the model’s exploration-exploitation
balance by changing the exploration value (ϵ), thus prompting
the model to explore more instead of exploiting known routes.

In a separate set of experiments, we examine the impact
of varying the ϵ value which determines the rate at which
the RL agent makes random moves during its exploration
phase (results shown in Figure 5d). However, we find that
encouraging the model to explore more does not result in any
performance improvement. The model’s knowledge which was
optimized for the existing environment, may not be suitable
for the new environment, which is drastically different from
what it had learned.

3) Lesson Learned from Reward Engineering in Routing:
We explored several reward functions to determine the best.
We first consider the performance of the MA-DQN model by
using the reward function described in Equation 4. Figure 6(c)
describes the error rate obtained when using (4). We observe
that the model was unable to converge. We also observe
that what produced optimal results for a single agent model
performed poorly in a multi-agent model. The reward function
does not penalize poor routing decisions enough but rewards
the agent for reaching the destination regardless of what route
it took when it was one step away from it. Such behavior leads
to positive rewards for greedy routing decisions. Additionally,
we noted how, since each routing decision is independent,
punishing the model for failing to send the packet yielded poor
routing performance results as only the last agent’s weights
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(a) (b) (c) (d)
Figure 1: CDF of the latency of a converged MA-DQN model on (a) (50V, 100E), (b) (100V, 200E), and (c) (150V, 300E)
Barabasi-Albert Network. We observe that the MA-DQN model is able to consistently outperform OSPF and ECMP. (d)
Episodic latency of the MA-DQN model during training in Barabasi-Albert Network.

(a) (b) (c) (d)
Figure 2: CDF of the latency of a converged MA-DQN model on (a) (50V, 100E), (b) (100V, 200E), and (c) (150V, 300E)
Waxman Network. We observe that the MA-DQN model is able to consistently outperform OSPF and ECMP.(d) Episodic
latency of the MA-DQN model during training in Waxman.

(a) (b) (c)
Figure 3: CDF of the bandwidth of a converged MA-DQN model on (a) (50V, 100E), (b) (100V, 200E), and (c) (150V, 300E)
Waxman Network. We observe that the MA-DQN model is able to consistently outperform OSPF and ECMP.

are affected by the punishment. The previous agents’ weights
are not impacted if the packet is not routed. Additionally,
the model gave the same reward regardless of how much
closer it reached the destination. Since the reward function
of Equation (4) did not provide enough incentives for better
routes, the model took longer to reach the destination. After
learning these lessons, we redesigned the reward functions
(Equations 5 - 6). To determine the negative constant used
in the reward function defined in (Equation 5 - 6), we run a
grid search in the range [−1,−.75,−.5,−.25,−.1] on a 100
Node Waxman topology. This allowed us to find the optimal
constant. As shown in Figures 6(a) and 6(b), we find that
for the agent to learn how to avoid poor routes effectively,
the magnitude of the negative reward needs to be larger than
the magnitude of the positive rewards. The model with the
negative constant of -.1 did not learn the best policy. The
value of the positive reward received by non-terminal packet
forwarding, a, can only be in the range (0, 1) since each link
has a latency between (0, 1). The positive terminal constant
encourages the agent to send the packet via the best possible
link when the packet is one step away from the destination.

We choose the value of 1.5 as it is sufficiently larger than
a. This reward structure brings an incentive for the agent to
choose the best possible link when the packet is one step away
from the destination.

After modifying the reward, we assessed the performance
of the new reward function described in Equations 5 - 6. The
last agent to make a packet routing decision does not receive
a punishment for failure to route the packet, as a single agent
cannot be the only one responsible for such failure to deliver
the packet. Additionally, the agent receives punishment for
making a greedy decision despite being one step away from
the destination. Additionally, the agent receives a larger reward
for decisions that bring it much closer to the destination than
decisions that bring it slightly closer to the destination. We
found that such modifications to the reward structure lead to
a significant training convergence speed-up.

4) Over-training Avoidance: In this section, we analyze the
results of over-fitting the model on a 100 Node following a
Barabasi-Albert network topology. One of the most significant
parameters for training a RL model is the so-called ϵ: such
parameter represents the trade-off between exploring and ex-
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(a) (b) (c) (d)

Figure 4: Performance comparison of MA-DQN and GNN when network topology changes. (a) MA-DQN performance with
links removed, (b) MA-DQN performance with nodes removed, (c) GNN performance with links removed, and (d) GNN
performance with nodes removed. Both models are evaluated on 50-node Waxman networks, and the results illustrate how
each model adapts to changes in network topology.

(a) (b) (c) (d)

Figure 5: Network Rate at which the agent makes poor decisions in (a) Barabasi-Albert and (b) Waxman. (c) Comparison
of the latency of converged MA-DQN models across Barabasi-Albert and Waxman topologies. We observe that the models’
performance remains similar across network sizes and topologies. (d) Evaluating model’s performance when ϵ - the rate at
which model explores - is set to an initial value of 1 after 5 nodes are removed from a 100 Node Barabasi-Albert Network.

(a) (b) (c) (d)

Figure 6: (a) Latency of the MA-DQN model during training when r=-.75 in Equation. 5 - 6 is replaced with different reward
values. (b) Frequency of positive non-terminal rewards (a in Equation. 5 - 6) the MA-DQN model received during training
when the reward for a poor routing decision is -.1. (c) The error rate for the MA-DQN model when the reward function in
Equation. 4 on a (100V, 200E) Barabasi-Albert network is used. (d) Evaluating the error rate when the MA-DQN model model
continues to be trained even after it has converged.

ploiting the RL environment. This parameter decays toward
0 during the training phase. When the parameter decays to
exactly 0, the type of accuracy loss in Figure 6(d) does not
occur. The value of ϵ decays to exactly 0 and yields results
shown in Figure 5(a,b). In Figure 6(d), ϵ decayed to 0.05,
causing the model to pick up on the noise and hence perform
poorly.

C. GCN Evaluation Settings

In reinforcement learning, two factors are commonly con-
sidered when comparing different approaches: (i) timesteps
to policy convergence and (ii) strength of a learned policy.
In a purely theoretical lens, the latter is the more critical
metric. However, in systems where retraining is required, the
former metric becomes essential. The traditional unattractive
view towards machine learning-based routing comes from the
protocol’s inability to quickly adjust to a change in network

state. This inability requires full retraining of the policy, given
that transfer learning is an open and unsolved problem in
reinforcement learning.

We improve the vanilla Q-Routing [26] by implementing
two different approaches: Double Q Learning [27] and Dueling
DQN [28]. Double Q learning fixes Q-network’s tendency
to overestimate the value of actions, which introduces a
maximization bias in learning and ultimately leads to unstable
training and negatively impacts the quality of the policy. Du-
eling DQN is an innovation in policy architecture: separating
the value and advantage estimators into two policies, then
rejoining them to select the action. The key concept behind this
design decision is that it is unnecessary to know each action’s
value at every time step. These modifications result in more
stable training (regardless of the RL application domain). In
our experiments, network topologies are generated by keeping
the settings used in IV-A. We train the SA-GCN model on
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(a) (b) (c)

Figure 7: (a) Comparing the reward strength between a GCN policy, a Q-Network, and the reward used in the Learning to Route
paper. (b) Comparing the number of training timesteps required for convergence between a GCN policy and a Q-Network. (c)
Analysis of reward functions with respect to latency and bandwidth in a (150V, 350E) Waxman topology.

(a) (b) (c)

Figure 8: Analysis of latency for a GCN policy and Q-Network for three different network topology classes: fat tree, Waxman,
and Barabasi-Albert (BA). (a): (50V, 100E), (b): (100V, 200E), and (c): (150V, 350E).

NVIDIA RTX A4000 GPUs, with 8GB of RAM, and train
the model for 1 million episodes. The model requires 2GB of
RAM.

D. Evaluation of GNN-Based Routing

1) GCN based Policies leads to Faster Convergence and
Stronger Reward Signals: In this experiment set, we com-
pare the characteristics of converged GCN-based policies, Q-
routing policies, and the policy used by the Learning to Route
paper [29], used as a benchmark (Figure 7). We also explore
how the use of Equation 3 to optimize a particular QoS metric
influences the routing performance in several networks.

Once the model is fully trained, we test the model using a
test set of a hundred different topologies for every network
size. We randomly choose the source-destination pairs. In
Figures 7-a and 7-b, the reward function used is described
in Equation 3, where we optimize the reward r to prioritize
low-latency paths.

Figure 7-b compares the time steps required for policy
convergence which requires the policy to successfully route
every source-destination pair in the test set of 100 randomized
topologies for every network size. The results show that
the GCN approach achieves a significantly higher percentage
score. Indeed, graphical convolutions are excellent at feature
extraction on graph-based data. We believe that such results
are due to the application of GCN to a network routing

task, combined with a reinforcement learning policy update
algorithm that outperforms Q-Learning in both efficiency and
ability to obtain better rewards.

Lastly, we explore how various reward functions operate
with respect to throughput and latency on a Barabasi-Albert
graph sized (100V, 350E) — Figure 7-c. For additional
comparison, the performance of two of the most commonly
used iBGP routing protocols, OSPF and ECMP, are plotted
as well. The three reward structures explored are as follows:
(i) optimize latency only, (ii) optimize bandwidth only, and
(iii) co-optimize latency and bandwidth. We find that each
algorithm optimizes what each respective reward function
sought to be optimized, showing that RL-based approaches
can potentially be customized according to a particular set of
QoS metrics [30]. In Figure 11, we compare the performance
of MA-DQN with GNN-based methods inspired by [31], along
with the reward function in equations 5 - 6. We observe that
in smaller networks, MA-DQN and GNN perform similarly.
However, in networks of size 75 nodes and above, MA-DQN
outperforms GNN-based methods.

2) Latency: Figure 8-a shows that GCN-based policies
can learn near-optimal routing policies with respect to the
latency in networks with sizes up to (60V, 160E), whereas
Q-Network’s ability to minimize latency when routing within
large networks is limited. In particular, to avoid re-training,
the GCN policy is first trained on random topologies and sep-
arately evaluated on previously unseen ones. On the contrary,
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(a) (b) (c) (d)

Figure 9: Analysis of bandwidth for a GCN policy and Q-Network for three different network topology classes: fat tree,
Waxman, and BA. (a): (50V, 100E), (b): (100V, 200E), and (c): (150V, 350E). (d) Comparing the average number of collisions
per routing for the SA-GCN model between the routed flow and the other flow sets in the network.

(a) (b) (c) (d)
Figure 10: Comparing QoS metrics for GCN (blue), Q-Network (green), Learning to Route (black) [29], OSPF (red), and
ECMP (yellow) with a variety of flow sets: (a) 1, (b) 2, (c) 4, and (d) 8, among 3 different network sizes: (50V, 100E), (100V,
200E), and (150V, 350E).

(a) (b)
Figure 11: Comparing GCN and MA-DQN: Latency CDF for MA-DQN and GCN models on (a) (50V, 100E), (b) (75V, 150E)
Waxman Network.

both Q-routing and LTR algorithms are explicitly trained and
evaluated on each topology. Such expressive power can be
attributed to the policy construction of Q-Networks. Densely
connected neural networks do not have as much expressive
power as their convolutional counterpart. The performance
deficiency is compounded when the data is graphical and
compounded even further when the neural network has to learn
the state transitions implicitly, s′, from all state-action pairs,
(s, a).

In Figure 8 we show the network performance on a test set
of 100 networks for each topology type. We selected a Fat
Tree topology to simulate data center networks. Waxman and
Barabasi-Albert topology generators were used for the other
two topology classes, given their popularity for modeling real-
world network topologies such as intra-domains and the World
Wide Web [32, 33]. In Figure 8, for each network topology
of all three sizes, a trained GCN-based policy outperforms a

trained Q-Network.
3) Bandwidth Improvements: Similar to the latency analysis

of GCN and Q-Routing, Figure 9 (a-c) compares the two
approaches and their ability to optimize bandwidth across the
same three network topologies, considering the exact three
network sizes. It is observed that our GCN policy construction
outperforms Q-Routing in all nine scenarios.

The GCN policy is only trained once for each network
topology size and then tested the previously unseen test
topologies for each class without any adjustment. Contrarily,
Q-Routing is trained explicitly on the test topologies. Despite
this, GCN was capable of achieving better performance in
terms of bandwidth than the Q-Routing solution.

4) Reward Engineering: In this experiment set, we inves-
tigate how different reward functions influence both latency
and bandwidth of the routes selected to complete our analysis.
The three reward functions observed minimize latency, maxi-
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mize bandwidth, and simultaneously optimize both with equal
weights. In these experiments, no other flow sets coexisted
in the network. As an additional comparison, we included
OSPF and ECMP to highlight how our policies compare to
industry-standard algorithms. For single flow protocols (i.e.,
all algorithms expect ECMP), GCN shows to learn more
robust policies than Q-routing and LTR. This evaluation shows
promising observations in reinforcement learning routing pro-
tocols that are fine-tuned adequately according to the desired
QoS metrics.

While GCNs outperform Q-Routing and LTR in several
metrics, the evaluation thus far has been under non-stressed
network conditions. That is, we assumed that there are enough
resources and no competition among flows to be routed. While
such an assumption may be appropriate in eBGP, we cannot
route unaware of other flows for transit links within each
Autonomous System or on other routing use cases. In an
even small data center network, tens of thousands of flows
may compete across server racks under the administration of
a single domain. However, not all flow collisions are equally
damaging. To assess the impact of other flow and see how our
algorithm would learn how to route while avoiding collisions,
we conducted two closely related experiments: comparing
the average number of collisions each protocol endured as
a function of other flow sets in the network and how said
collisions impact the latency and bandwidth of the flow set
being routed by the policy.

Figure 9(d) depicts the average number of collisions as a
function of the number of other flow sets in a network size
of (100V, 200E). We measured how ECMP resulted in the
highest number of collisions due to the flow being split among
several distinct paths from source to destination. Our other
benchmark based on Q-Routing achieved a similar amount of
average collisions with the GCN policy. To quantify how the
number of packet collisions impacts QoS metrics in Figure 10
we provided a more in-depth analysis regarding such an impact
on latency and bandwidth. In the case of 1 and 2 competing
flow sets (say mice and elephant), ECMP outperformed all
other protocols. However, when there were 4 and 8 competing
flow sets, the GCN policy’s learned ability to avoid the other
flow sets produced the best-realized bandwidth and latency
among all the other protocols.

5) Impact of retraining needs for GNN: Similar to Sec-
tion IV-B2, in Figures 4(c-d) we replicate the experiment
for GNN and observe that the GNN can relearn an optimal
policy for minor changes in the environment. However, with
larger network topology changes, GNN is unable to relearn an
optimal policy in a timely fashion. Hence we conclude that in
those cases, retraining the model from scratch leads to better
results.

V. CONCLUSION

In this paper, we explored packet routing with reinforcement
learning with a few novel twists. Our objective has been
to study the impact of topology and traffic changes on a
trained neural network, evaluating the ability of the model to
dynamically adapt without the need for retraining. To do so,
we focused on single-domain routing, suitable, e.g., for interior

BGP, and on multi-domain routing, valuable for larger scale
routing protocols such as exterior BGP. We proposed a Single
Agent RL model, based on a Graph Convolutional Network [4]
(GCN) to fit the former, and a multi-agent Deep Q-Learning
Network model for the latter.

We report reward engineering considerations on our routing
algorithms, evaluating both single and multi-agent solutions
in extensive experimental settings with different network sizes
and connectivity models. Our results show that single-agent
with GCN improves the ability to achieve high QoS metrics
when the computer network topology changes after the RL
training converges. Moreover, the multi-agent model is able
to scale well with larger networks, consistently outperforming
OSPF and ECMP. Our findings indicate that the MA-DQN
model is capable of adapting to changes in topology in
networks with up to 50 nodes, but we also observed limitations
in its ability to relearn an optimal policy on larger networks.
These observations highlight interesting directions for future
research in this area. Our code is available with an MIT license
at [34].
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