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Abstract—The computer networking community has been
steadily increasing investigations into machine learning to help
solve tasks such as routing, traffic prediction, and resource
management. In particular, due to the recent successes in
other applications, Reinforcement Learning (RL) has seen steady
growth in network management and, more recently, in routing.
However, changes in the network topology prevent RL-based
routing approaches from being employed in real environments
due to the need for retraining. In this paper, we approach routing
as an RL problem with two novel twists: minimizing flow set
collisions and dealing with routing in dynamic network conditions
without retraining. We compare this approach to other routing
protocols, including multi-agent learning, to various Quality-of-
Service metrics, and we report our lesson learned.

Index Terms—Routing protocols, Machine learning algorithms,
Reinforcement learning, IP networks, Network Management.

I. INTRODUCTION

An emerging application of Machine Learning (ML) is the

automation of computer network management tasks. ML has

been used recently for various tasks in networking ranging

from traffic classification and resource management to attack

detection, to name a few. However, several solutions in the

networking field have recently proven that one of the most

prolific ML areas is Reinforcement Learning (RL). In particu-

lar, traditional approaches to packet routing using RL leverage

a single-agent learning approach to learn the environment.

Despite such recent achievements in routing with reinforce-

ment learning, a single agent still has to learn the topology

through a centralized strategy, representing an impractical

scenario for realistic environments. To cater to such needs,

centralized techniques, such as graph convolutional networks

or distributed RL approaches, have been recently designed,

bringing several benefits. For example, in multi-agent RL,

agents cooperate to achieve a shared objective, learn faster, and

occasionally safeguard privacy. They may withstand failures

overcoming the physical limitation of a single RL agent. For

example, in multi-agent RL, agents cooperate to achieve a

shared objective, learn faster, occasionally safeguard privacy,

to a certain extent and may withstand failures overcoming the

physical limitation of a single RL agent.

Prior traffic engineering solutions have focused on the

improvement of routing algorithms using RL with interesting

techniques, but without considering resiliency against network

changes during or after the learning process; Other solutions,

e.g., [1], ignored the need to explicitly improve path conges-

tion awareness, and merely focused on learning to route.

In this paper, we approach the problem of routing with rein-

forcement learning with adaptability in mind. By adaptability,

we mean an approach that applies to both intra and inter-

domain routing problems, e.g., iBGP and eBGP, as well as

adaptability to network changes without the need to retrain

the RL algorithm. In some cases [2], to fine-tune traffic

engineering policies, it is desirable to overwrite classical

interior BGP routing rules, such as Equal Cost Multi-Path

(ECMP) and Open Shortest Path First (OSPF). In other cases,

a distributed approach is the only viable solution [3]. We

present the design, implementation, and evaluation of two

routing schemes based on RL, one using single-agent and

one using multi-agent learning. Each one is suitable for a

partially disjoint subset of computer networks. The Single-

Agent RL uses Graph Convolutional Networks [4] to minimize

retraining needs. The Multi-Agent RL instead uses Deep Q-

Networks, where federated routing agents cooperate, suiting

e.g., exterior BGP (eBGP) or Wide Area Networks under a

single administrative domain.

Our Single-Agent Graph Convolutional Network algorithm

(SA-GCN) operates directly on network traffic datasets en-

coded in a graph format, instead of a traditional vector and

matrix data representations. The advantage of having a graph

as input permits an RL policy to operate in any topology and

learn from changes in routing and congestion events without

the need to retrain.

In our Multi-Agent routing with Deep Q-Network algorithm

instead (MA-DQN), each agent makes its routing decisions

locally. By feeding the network topology to the RL agent’s

state space, the machine learning model is able to handle

changes in latency and bandwidth more efficiently. Moreover,

as RL agents learn about the network topology explicitly, the

training time significantly improves, confirming our intuitions.

Among our main findings, we report that our RL models

outperform the standard routing algorithms (with and without

RL) and achieve an overall improvement under several metrics.

Furthermore, we found that our MA-DQN routing algorithm

achieves the optimal policy much faster than our single-agent

counterpart (SA-GCN).

Our main contributions can hence be summarized as fol-

lows: we dissect the routing with reinforcement learning

problem through (i) separately analyzing advantages and

drawbacks of using both single-agent and multi-agent RL,

(ii) giving an overall comparison between them in terms

of network change resiliency and retraining needs. (iii) We
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discuss each model to leave insights on the optimization

process when tackling a challenging task such as network

routing with changes and (iv) we compare their performance

against existing routing algorithms.

The remainder of the paper is structured as follows. In

Section II we overview the state-of-art approaches on RL

for routing optimization, detailing both single and multi-agent

solutions. Section III defines the RL model for GCN and

DQN-based algorithms. Section IV reports the evaluation of

the results in terms of the achieved QoS metrics and compared

our approaches with the routing baselines. In Section V we

conclude the paper.

II. RELATED WORK

Routing protocols pose challenging requirements for ML

models, such as dealing with and scaling complex and dynamic

network topologies, learning the correlation between the se-

lected path and the perceived QoS, and the ability to forecast

the repercussions of routing decisions. Different techniques to

apply RL to the traffic routing problem have been proposed

in literature [5, 6, 7, 8]. These techniques differ in terms of

(i) learning capability distribution and (ii) the amount of

collaboration among numerous learners. The presence of a

central node —the controller in Software-Defined Networks

(SDN) and the sink in Internet of Things (IoT) networks,

respectively — allows for centralized learning in SDN [9]

and IoT. Routing in IoT, on the other hand, necessitates de-

centralized RL [10, 11], with the learning capability dispersed

across the routing nodes. In the rest of this section, we focus

on solutions that most closely match our contribution, with

respect to two dimensions: Single-Agent Q-learning solutions

for traffic engineering and routing with Multi-Agent learning.

A. Single-Agent Deep Q-learning for Traffic Engineering

A few recent solutions have employed Deep Q-Learning

to tackle traffic engineering problems. The authors in [12]

implement a deep-RL solution to improve the performance of

baseline TE algorithms of an SD-WAN-based network in terms

of service availability. Results show that Deep Q-Learning

achieves better performance with respect to the other deep-

RL algorithms and the baselines in terms of the percentage of

time in which the service is up. In [13], a greedy online QoS

routing method based on dueling deep Q-network is employed,

proving that this solution can learn the network topology to

solve multiple QoS metrics optimization tasks.

Differently from all these sound solutions, in this work, we

investigate the application of GCNs to Deep Q-Learning for a

QoS routing optimization problem.

B. Routing with Multi-Agent Reinforcement Learning

Although previous studies of DRL-based techniques have

demonstrated the ability to deploy routing configurations in

dynamic networks autonomously, some researchers have ar-

gued that centralized controller approaches are likely to face

challenges in large-scale networks due to the difficulties of

collecting widely distributed network status in real time.

Multi-Agent Reinforcement Learning has rapidly become

an important research direction. A few authors have proposed

bringing these approaches to optimize routing protocols [14,

15, 16, 17]. In particular, [16] proposes a multi-agent rein-

forcement learning framework for adaptive routing in commu-

nication networks, which takes advantage of both the real-time

Q-learning and the actor-critic methods.

Pinyoanuntapong et al. [15] formulated the traffic engi-

neering decision-making problem as a Multi-Agent Markov

decision process (MA-MDP) In MA-MDP, observations, ac-

tions, and rewards of multiple agents are integrated for joint

learning. Similar to these approaches, we use the Q-routing

technique for traffic-aware routing, but our solution uses a

fully distributed multi-agent Deep Q-Learning Reinforcement

Learning algorithm to deal with QoS requirements and topo-

logical changes.

III. MODEL AND BACKGROUND ON GCN AND MA-DQN

In this section, we detail the design of our single-agent and

multi-agent routing approaches. Specifically, we describe the

RL model and define the state and action space along with

the selected reward functions both for GCN-based algorithm

(Section III-A) and DQN (Section III-B).

A. Single Agent GCN Policy Background and Settings

GCNs (Graph Convolutional Networks) [4] are a graph-

based variation of Convolutional Neural Networks (CNNs).

GCNs stack layers of learned first-order spectrum filters fol-

lowed by a nonlinear activation function to learn a graph

representation.

The key benefit of using GCNs as the policy network is the

policy’s ability to not be restricted to one network topology.

The topology is explicitly provided as an input to the policy

network. This topology agnostic approach is demonstrated

in our experiments. A network experiences congestion when

several flow sets coexist on the same underlying path. We aim

at learning how to minimize the coexistence of flow sets as long

as alternative routes exist. We define such flow coexistence

to be a collision, when two or more flow sets coexist in the

same forwarding application process, i.e, a (virtual) router or

switch, at the same time.

Since an action that an RL agent chooses influences subse-

quent actions, we model the problem as a Sequential Decision-

making Problem (SDP). The following tuple characterizes

an instance of our problem: M =< S,A,R, γ >, where

S is a finite set of states, A is a finite set of actions, R

is the immediate reward, and γ is the discount factor. We

denote f as the number of flow sets in the system, and

N is the number of nodes in the system. We design our

RL algorithm by leveraging an “on-policy approach”, aiming

to optimize our policy network output (i.e., the probability

distribution of actions). In order to achieve a more stable

training and avoid divergence, we use the PPO (Proximity

Policy Optimization [18]) algorithm. We next describe each

element of the Sequential Decision-making Problem tuple in

detail.
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State Space. Let S denote the finite set of states that are

admissible in the environment. An arbitrary state contains

three parts. The first part is the adjacency matrix of the

network. The second part is a 2-column matrix containing a

one-hot encoding of the source and destination nodes of the

flow set to be routed by the GCN. The third part is a f × 2
matrix where each layer of the matrix is a similar 2-column

matrix but of a competing flow set in the network. The state

does not contain what path other flow sets are taking across

the network but merely their source and sink nodes.

Action Space. Let A denote the finite set of actions that the

agent can take. As in [19], we construct the action space as

a one-hot vector the size of the highest degree node in the

graph.

Reward Functions. Let R(s, a) denote the immediate reward

(or expected immediate reward) received for selecting an

action (routing decision) a ∈ A at a state s ∈ S which causes

the state transition s → s′, and R(s, a) ∈ [−1, 1].

R(s, a) =



















−1 could not reach destination

r reached destination

0.1 moved closer to target

0 otherwise

(1)

The environment in which the agent operates receives a

one-hot encoding of the destination as input. The input is

then passed onto a feed-forward neural network with a ReLU

activation. The input layer has a size equal to the number of

nodes in the graph. Subsequently, there are two hidden layers

of size
|V |
2

followed by an output layer with a size equal to

the number of neighbors for that agent.

B. Multi Agent DQN Background and Settings

In our MA-DQN approach, we design an algorithm that uses

a Deep Q-Network (DQN), a combination of reinforcement

learning techniques and deep neural networks [20].

To stabilize the training, we first employ a replay buffer

in our algorithm that keeps track of the (s, a, r, s′, a′) tuple,

where s denotes the current state, a denotes the current action,

r denotes the current reward, s′ denotes the next state, and

a′ denotes the next action. Secondly, DQN uses an iterative

update that periodically adjusts action values to the target

values to avoid correlations.

The computer network in which the RL agent operates is

described by a standard graph G(V,E) where V represents the

set of routing nodes and E represents the set of transmission

links. Each transmission link contains some traffic that we

simulate. The goal is to find the path that minimizes the latency

between each source (s) and destination (d).

In the MA-DQN model, each node is an agent that imple-

ments DQN independently. Each agent has its neural network

and makes routing decisions independently.

State Space. To train our RL model, we construct the state

space as a one-hot encoding vector whose size equals |V |,
i.e., the number of routers. The one-hot vector represents the

destination of the packet. In each episode, the state space

remains similar among all agents.

Action Space. We construct the action space also as a one-

hot vector whose size equals the number of neighbors of each

agent. At each time step t, the agent chooses a neighbor after

observing the state space.

Reward Functions. To route in larger networks, we use a

dense reward function. Per our reward function in Equation 2-

3, the agent receives either a positive or a negative reward

for each routing decision taken. We find that this structure

significantly increases the rate at which the model converges.

Therefore, if the packet is more than one step away from

the destination:

R(s, a) =

{

a moved closer to destination

−.75 otherwise
(2)

Where a is the difference between the time it would take the

packet to reach the destination from the node it is currently

at, and the time it would take for the packet to reach the

destination from the node it was at. If the packet can reach

the destination using one link, the reward structure is:

R(s, a) =

{

1.5 took best link to destination

−.75 took sub-optimal link to destination

(3)

The environment in which the agent operates receives a

one-hot encoding of the destination as input. The input is

then passed onto a feed-forward neural network with a ReLU

activation. The input layer has a size equal to the number of

nodes in the graph. Subsequently, there are two hidden layers

of size
|V |
2

followed by an output layer with a size equal to

the number of neighbors for that agent.

IV. EVALUATION

In this section, we evaluate both proposed algorithms,

single-agent via GCN and multi-agent via DQN, with respect

to Quality of Service (QoS) metrics for traffic engineering.

A. Evaluation Settings

In all our experiments, we considered network topologies

following both Waxman (random-biased) and Barabasi-Albert

(preferential attachment) topologies. Our networks have sizes

50 Vertices, 100 edges (50V, 100E), (100V, 200E), and

(150V, 300E). These topologies were generated using the

BRITE topology generator [21]. After generating these net-

work topologies, we simulate several traffic scenarios in static

and dynamic conditions. In particular, in our experiments, we

simulate traffic by generating flows that take the shortest path

from randomly generated source-destination pairs. For each

packet traveling on a (virtual) link, we reduce the correspond-

ing residual capacity and increase the latency proportionally

to the flow packet size. Unless otherwise specified, we use

a replay buffer size of 5000, a batch size of 192, and the

RMSprop optimizer. Specifically, in our SA-GCN solution,

we improve vanilla Q-Routing by implementing two different

approaches: Double Q Learning [22] and Dueling DQN [23].
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(a) (b) (c) (d)

Figure 1: CDF of the latency of a converged MA-DQN model on (a) (50V, 100E), (b) (100V, 200E), and (c) (150V, 300E)

Barabasi-Albert Network. We observe that the MA-DQN model can consistently outperform OSPF and ECMP. (d) Episodic

latency of the MA-DQN model during training in Barabasi-Albert Networks.

(a) (b) (c) (d)

Figure 2: CDF of the latency of a converged MA-DQN model on (a) (50V, 100E), (b) (100V, 200E), and (c) (150V, 300E)

Waxman Network. (d) Episodic latency of the MA-DQN model during training in Waxman.
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Figure 3: (a) Evaluating the MA-DQN model’s accuracy during training when 5 nodes of a (50V, 100E) Barabasi topology

is removed after the model converges (b) Evaluating the latency for the same experiment (c) Evaluating the model’s accuracy

when 5 nodes from a (100V,200E) Barabasi-Albert network is removed. (d) Evaluating the model’s latency for the same

experiment.

B. Evaluation of Multi Agent DQN

1) Multi Agent DQN based policies outperforms OSPF and

ECMP: In this section, we compare the latency of converged

DQN policies, OSPF and ECMP.

Figures 1(a-c) and 2(a-c) compare the latency of the afore-

mentioned policies on networks of various sizes and topology,

showing that Multi-Agent DQN based policies learn near-

optimal routing policies with networks of sizes up to (150V,

300E). One of the most significant results from our experi-

ments is the model’s scalability, as we found that our solution

outperforms classically adopted routing protocols such as

OSPF and ECMP even on large networks. From Figures 1(d)

and 2(d) we observe that the training time scales well with

respect to the topology size. We attribute this to the fact that

the network topology is built into the neural network of each

agent. Our application of a dense reward function plays a

significant role in performance.

2) Impact of Retraining Needs: In this experiment set, we

further investigate the performance of the model when the

topology changes. We observe the model’s performance when

a number of nodes are removed (become unavailable) after

the model reaches convergence. The results in Figure 3(a-b)

are generated from a 50 Node network following the Barabasi-

Albert model. For each experiment trial, we remove 5 nodes at

random after the RL model training had converged. We route

2000 packets after the model is fully trained. As expected, after

removing the nodes, the model can relearn the optimal routing

strategy. However, for larger networks the re-learning time

grows significantly. Figures 3(c-d) show that when removing 5

nodes from a (100V, 200E) Barabasi-Albert network topology

after the model converges, the model is unable to relearn an

optimal policy quickly, suggesting that it is faster to retrain

the model from scratch on larger networks especially since the

model converges relatively quickly when trained from scratch.

Since the neural network retains the environment’s topology,
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(a) (b) (c)

Figure 4: (a) Comparing the reward strength between a GCN policy, a Q-Network, and the reward used in the Learning to

Route paper. (b) Comparison between number of training timesteps required for convergence. (c) Analysis of reward functions

with respect to latency and bandwidth in a (150V, 350E) Waxman topology.

(a) (b) (c)

Figure 5: Analysis of latency for a GCN policy and Q-Network for three different network topology classes: Fat Tree, Waxman,

and Barabasi-Albert (BA). (a): (50V, 100E), (b): (100V, 200E), and (c): (150V, 350E).

reduction of nodes resulted in a topology change too large for

the machine learning model to relearn an optimal policy.

C. Evaluation of GCN

1) GCN based Policies leads to Faster Convergence and

Stronger Reward Signals: In this experiment set, we com-

pare the characteristics of converged GCN-based policies, Q-

routing policies, and the policy used by the Learning to Route

paper [1], used as benchmark (Figure 4).

We used a test set of a hundred different topologies for

every tested algorithm for every network size. Once the model

is fully trained, we test the model using 200 source-destination

pairs for the SA-GCN model. The source and destination are

chosen randomly.

Figures 4-a shows the optimal score percentage between our

solution and benchmarks, varying the network size. We can

see how our SA-GCN approach outperforms the others when

optimizing the reward to prioritize low-latency paths. Figure

4-b compares the time steps required for policy convergence.

Such convergence requires the policy to successfully route

every source-destination in the test set of 100 randomized

topologies for every network size.

Lastly, in Figure 4-c, we explore how various reward

functions operate with respect to throughput and latency on

a Barabasi-Albert graph sized (100V, 350E). For additional

comparison, the performance of two of the most commonly

used iBGP routing protocols, OSPF and ECMP, are plotted

as well. The three reward structures explored are as follows:

(i) optimize latency only, (ii) optimize bandwidth only, and

(iii) co-optimize latency and bandwidth. As shown, each

algorithm was capable of optimizing what each respective

reward function sought to be optimized, showing that RL-

based approaches can potentially be customized according to

a particular set of QoS metrics.

2) Latency: In Figure 5 we show the network performance

in terms of latency on a test set of 100 networks for each

topology type. We selected a Fat Tree topology to simulate

data center networks. Waxman and Barabasi-Albert topology

generators were used for the other two topology classes. It

is worth noticing that for each network topology and all the

three sizes, a trained GCN-based policy outperforms a trained

Q-Network in both median latency and standard deviation.

V. CONCLUSION

In this paper, we explored packet routing with reinforcement

learning with a few novel twists. Our objective has been

to study the impact of topology and traffic changes on a

trained neural network. To do so, we focused on single domain

routing, suitable e.g., for interior BGP, and on multi-domain

routing, valuable for larger scale routing protocols such as

exterior BGP. We proposed a Single Agent RL model, based

on a Graph Convolutional Network (GCN), to fit the former,

and a Multi-Agent Deep Q-Learning Network model for the

latter. We evaluate both single and multi-agent solutions with

different network size and connectivity models. We found that

single-agent with GCN improves on the ability to achieve high
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QoS-metrics when the computer network topology changes

after the RL training had converged. We also found that our

multi-agent model is able to scale well with larger networks,

consistently outperforming OSPF and ECMP.
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