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Abstract— Network measurement and telemetry techniques are
central to the management of modern computer networks. In-
ternet traffic matrix estimation is a popular technique employed
for network management and telemetry to reconstruct missing
information. Existing approaches use statistical methods, which
often make impractical assumptions about the structure of the
Internet traffic matrix. Data-driven methods, instead, heavily
rely on the assumption of full knowledge of network topology
data, that may be unavailable or impractical to collect. In this
work, we propose ResCue, a deep residual networks technique to
infer fine-grained Internet network traffic starting from spatial
coarse-grained measurements. To address scenarios with network
visibility constraints, we design a federated learning approach for
fine-grained traffic prediction with partial network knowledge.
Our evaluation across real-world traffic data shows that our
proposed approach outperforms existing interpolation techniques
and that our federated learning design achieves similar accuracy
with respect to its centralized counterpart while requiring only
partial knowledge of the network.

Index Terms—traffic prediction, super resolution, deep learn-
ing, federated learning

I. INTRODUCTION

Optimizing network traffic efficiency often requires sophis-

ticated analytics and timely problem-solving, especially after

readily achievable improvements have been exhausted. The

complexity of modern networks poses challenges for effective

data collection, particularly when it comes to identifying,

monitoring, and debugging issues in hidden network seg-

ments. As the Internet becomes an increasingly distributed

and federated infrastructure for web services, visibility into

its traffic characteristics is hindered by several factors: from

business intelligence to prohibitive computational cost and

storage requirements associated with collecting Internet traffic

data at scale [1], [2], [3].

Even after years of extensive research in this area, network

operators and DevOps continue to depend on fine-grained

metrics for their applications and troubleshooting. Moreover,

even the most accurate network measurement systems are

prone to inaccuracies or data amputations. Consequently, it’s

often necessary to refine the Traffic Matrix (TM) of interest

to a more complete state before it can be an input to various

debugging applications, or serve as complete training data for

data mining algorithms, including those based on Deep Learn-

ing for network management automation or semi-automation

tasks [4].

Recent works highlighted the efficacy of Machine Learning

(ML), in general, and Neural Network (NN) architectures,

in particular, in the estimation of traffic matrices. These

include approaches leveraging Deep Neural Networks

(DNNs) [5], Recurrent Neural Networks (RNNs) [6], and

Convolutional Neural Networks (CNNs) [7], to reconstruct

missing cells in TMs [8], [9], [10]. While these solutions yield

promising results, they still assume access to fine-grained

measurements, which might not always be available [11],

[12]. In addition, partial visibility is often inherently restricted

due to architectural, privacy, or regulatory constraints. These

scenarios typically involve multiple entities or network

segments that cannot or should not share raw traffic data [13].

In this work, we introduce ResCue, a novel algorithmic

approach that leverages Deep Residual Networks for inferring

real-time network monitoring and telemetry, focusing on the

fine-grained prediction of Internet traffic matrices. Unlike

traditional methods, which rely on direct and high-frequency

measurements, our method uses aggregate, coarse-grained data

to estimate high-resolution traffic matrices with minimized in-

ference error. Additionally, to further address scenarios marked

by very limited visibility, we propose a distributed approach

based on the Federated Learning (FL) procedure [14]. This

extension allows us to train ResCue across multiple network

partitions, each possessing only partial visibility of the global

traffic patterns.

Somehow surprisingly, our findings demonstrate that even in

the absence of specific data proximity features — commonly

utilized in classical super-resolution methods for computer vi-

sion — TMs retain essential characteristics that allow for accu-

rate inference. Tests on real-world datasets, i.e., GÉANT [15]

and Meta [16] validate the effectiveness of our approach for

network traffic prediction compared to other super-resolution

techniques. Moreover, we demonstrate its effectiveness when

distributing the learning process among multiple clients with

partial or no network visibility, making the solution more

scalable and efficient.

The rest of the paper is organized as follows. Section II

discusses the related work and in Section III we formulate

the traffic matrix super-resolution problem, as an extension of

the traffic matrix inference problem. In Section IV we detail

our model and the FL approach. In Section V we describe

the datasets and our data preparation methodology, and in

Section VI we discuss our evaluation results, showing the

benefits both in a centralized and federated fashion. Finally,

in Section VII we present our conclusion.



II. RELATED WORK

The problem of traffic matrix (TM) estimation has received

considerable attention within the field of computer networking,

and it has been approached from various perspectives due

to its wide-ranging applicability for web and other Internet

services [17], [18].

A range of methods for predicting such matrices is based on

the incorporation of side information from different sources,

such as total incoming bytes and a number of customers [19].

Approaches rooted in network tomography theory have tra-

ditionally been proposed as solutions: these methods involve,

for example, describing the relationship between link loads

and the end-to-end traffic flows in the network, and gener-

ally require topological information and heuristically defined

constraints to function [20], [21]. Tomographic models have

thus often been paired with algorithms (e.g., Compressive

Sensing [22]) in order to overcome the obstacles the former

entails. In the same vein, data-driven solutions have also been

explored as a way to estimate end-to-end flows from link load

measurements [23] or from more granular (in time) infor-

mation [24]. An alternative approach comprises reconstruct-

ing TMs starting from partial traffic information, exploiting

either spatial or temporal patterns. To predict future traffic

values, Autoregressive Integrated Moving Average (ARIMA)-

based approaches have been proposed [25], [26]. However,

they struggle when capturing the nonlinear complexities of

network traffic. To solve this issue, recent Machine Learn-

ing (ML) and Deep Learning (DL) techniques have shown

great promise in tackling these nonlinear issues. The authors

in [5] demonstrated the superior capacity of DL models to

unearth the nonlinear characteristics of network traffic, as

opposed to ARIMA models. Following this line of work,

various approaches make use of Recurrent Neural Networks

(RNNs), Long Short-Term Memory (LSTM), Convolutional

Neural Networks (CNNs) to reconstruct TMs either spatially

or temporally [6], [27], [28], [29], [9]. Differently from these

solutions, we attempt to solve this problem from a new angle

that answers to this research question: Can we infer fine-

grained measurements starting from coarse-grained ones with

partial network knowledge? The fine-grained prediction task

finds similarities in the computer vision fields, where often it

is the case to learn complex mapping functions that upgrade

low-resolution images to high-resolution images [30], [31],

[32], [33]. Within the networking field, Zhang et al. [34]

leverage a GAN-based super-resolution technique to infer mo-

bile network traffic from coarse-grained measurements. Unlike

ours, their approach relies on spatial information specific

to cellular traffic and assumes full visibility of the network

data, often unrealistic in many practical scenarios, e.g., cloud

environments with data isolation policies, multi-tenant data-

center networks, or ISP networks with multiple administrative

domains. In conclusion, our work is the first attempt to address

TM prediction from a fine-grained perspective while operating

on aggregated coarse-grained network traffic measures with

partial network visibility.
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Fig. 1: Overview of ResCue. Our solution takes traffic matri-

ces built with aggregate flows from geographically clustered

network nodes and super-resolves them into fine-granularity

traffic matrices indexed by single network nodes.

III. PROBLEM DEFINITION

A traffic matrix is a data structure used in network engi-

neering that represents the volume of traffic between different

points in a network. Specifically, it quantifies the amount of

data being sent from each origin node to each destination node

within a given timeframe. The matrix is often used for a variety

of network planning, optimization, and management tasks, in-

cluding capacity planning, load balancing, and fault diagnosis.

We define a TM as a 2-dimensional array M ∈ R
N × R

N ,

where N is the number of nodes in the network. We denote

with M(i, j; t) the traffic from node i to j, averaged over the

time interval [t, t+∆t), defined as the aggregation granularity.

With this setting, at a given interval [t, t + ∆t], each

element of a matrix M(i, j) indicates the volume of data, in

bytes, transmitted from node i to node j within the specified

measurement interval.

A. Traffic Matrix Inference

With ResCue, we aim to infer network traffic data at a

high spatial resolution (i.e., fine-grained), using as a starting

point measurements collected at a lower spatial resolution (i.e.,

coarse-grained) in the network. We represent this problem in

Fig. 1, highlighting how the aggregated matrix can combine

information from different regions/operators. Specifically, spa-

tially fine-grained data refers to traffic measurements between

individual nodes or endpoints in the network. This might rep-

resent, for example, rack-to-rack traffic flows in a datacenter

or the traffic between specific hosts or points of presence in

a wide-area network (WAN). Spatially coarse-grained (low-

resolution) data represents aggregated traffic measurements

over larger network areas or clusters - i.e., pod-level traffic

in a datacenter or regional traffic in a WAN, where multiple

individual nodes are grouped together.

To formally define the traffic matrix inference problem we

address in this paper, let MLR denote the low-resolution

(LR) traffic matrix, and MHR the high-resolution (HR) traffic

matrix. The goal is to recover an approximation M̂HR of the

ground truth HR traffic matrix, starting from its LR version

MLR:

M̂HR = F (MLR; θ), (1)

where F is the super-resolution model and θ represents its

parameter vector. The recovered HR traffic matrix M̂HR

is also denoted as super-resolved traffic matrix MSR. Our



traffic matrix estimation problem is modeled by the following

optimization:

θ̂ = argmin
θ

L(M̂HR,MHR) + λΦ(θ), (2)

where L(M̂HR,MHR) is the loss function between the pre-

dicted HR traffic matrix M̂HR and the ground truth traffic

matrix MHR, Φ(θ) is a regularization term and λ is the trade-

off parameter. We solve this problem using a deep learning

approach, and we adopt the mean absolute error (MAE) loss

function to measure the quality of our super-resolution traffic

matrix inference. Unlike other metrics, such as Mean Squared

Error (MSE), MAE is less sensitive to outliers and therefore

offers a more robust evaluation of our model’s performance in

generating fine-grained network traffic predictions.

B. Inferring Traffic With Partial Network Visibility

Deep learning models typically require comprehensive net-

work data to achieve high accuracy and generalizability.

In ideal scenarios, they are trained on complete network

traffic matrices, which is not always feasible or realistic in

large-scale, complex network environments. In many practical

scenarios, different parts of the network may be managed

by separate entities, each with only partial visibility of the

overall network traffic. Our work addresses this challenge by

integrating our model with a federated deep learning approach.

In our framework, each client represents a portion of the

network with limited visibility, possessing only a subset of

the complete traffic matrix.

We distribute non-overlapping portions of the fine-grained

traffic matrix across different clients, each representing a

segment of the network. These fine-grained sub-matrices serve

as the ground truth for each client. Each client then creates its

own coarse-grained traffic matrices corresponding to its fine-

grained sub-matrix (see Section V-A), which are used as inputs

to predict the fine-grained ones. Our aim is to reconstruct the

original fine-grained matrix by utilizing the model parameters

learned by these distributed agents.

The fine-grained matrix is split into smaller sub-matrices,

each of which is m√
N
× m√

N
(assuming N is a perfect square

for simplicity), where m is the total number of nodes in the

fine-grained traffic matrix. Let
√
N = k, then each client n

with 1 ≤ n ≤ N would receive a portion of the fine-grained

traffic matrix defined as

M(i,j) = M

([
(i− 1)m

k
+ 1,

is

k

]
,

[
(j − 1)m

k
+ 1,

jm

k

])
,

(3)

where n = (i− 1)× k + j.

The model is then distributed among the involved N clients,

and over T rounds of aggregations, a global model is derived

and used to predict the full fine-grained data. Throughout this

process, each client learns to infer traffic patterns based only

on its own portion of the network, contributing to the overall

global model, as per the procedure detailed in Section IV-B.
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Fig. 2: Impact of the number of residual blocks on the learning

procedure.

IV. TRAFFIC MATRIX ESTIMATION WITH DEEP RESIDUAL

NETWORKS

In the field of machine learning, Deep Residual Networks

(ResNets) have emerged as a groundbreaking innovation,

particularly designed to alleviate the vanishing and exploding

gradient issues plaguing deep networks [30], [35], [31], [36].

Central to the ResNet paradigm is the concept of “residual

learning,” wherein each layer learns not the direct output map-

ping but rather the residual (or difference) between the input

and the desired output. Mathematically, if H(x) represents the

ideal mapping, ResNets aim to approximate F (x) = H(x)−x,

subsequently recovering H(x) through the sum F (x) + x. A

residual block consists of multiple convolutional layers inter-

jected by batch normalization and ReLU activation functions.

We studied the impact of the number of residual blocks on

the training procedure, reporting results in Fig. 2. Contrary to

other studies, e.g., the findings in [30], a deeper architecture

does not necessarily yield better results for our dataset. In

fact, increasing the number of residual blocks tends to induce

significant overfitting, especially when dealing with sparse

traffic matrices. The final output is obtained by adding this

block’s output to its input, followed by an activation function.

The residual learning mechanism thus equips ResNets with

the capability to form much deeper networks, promoting

easier training and more robust feature representations, thereby

setting new benchmarks across a wide range of machine

learning tasks. Inspired by [36], we propose a Deep Residual

Network architecture that infers fine-grained network traffic

volume from coarse-grained aggregates.

A. Model Architecture

Motivated by results of Fig. 2, we design our core model

with Nb = 4 residual blocks. Each residual block comprises of

two convolutional layers separated by a Parametric ReLU [37]

activation function. Each convolutional layer is equipped with

small 3× 3 kernels and 64 feature maps, followed by a batch

normalization layer. The merged feature map then undergoes

up-sampling to match the desired scale. The up-sampling is

realized through a sub-pixel convolution layer [38].

B. Federated Training

Finally, we leverage a distributed learning technique to

train our super-resolution mode even in scenarios of partial

network visibility, where complete knowledge of the entire

network is unavailable, and only non-overlapping segments of



the network are accessible. In this setup, we aim to evaluate

how effectively the distributed training approach allows insight

into network traffic from other clients, even in the absence of

comprehensive global knowledge of the network. By limiting

visibility to only a sub-portion of the entire network, each

federated client will have to monitor, aggregate, and process

only a limited amount of data, leading to a reduction in the

costs of communication and storage of the network traffic

information collected.

We formulate our distributed learning problem as a three-

phase procedure: Initialization, Aggregation, and Update. Dur-

ing Initialization, each client receives a pretrained global

model ωt from the aggregator. The clients then train this

model using their local data Dk, which consists of coarse-

grained (i.e., training set) and fine-grained (i.e., ground truths)

measurements. During the Aggregation phase, clients send

their local gradients to an aggregator, either a central entity

or one client serving as aggregator. The average loss over the

client’s local dataset, for each client k, is given by:

min
x∈Rd

Fk(x) =
1

Dk

∑

i∈Dk

Ezi∼Dk
f(x; zi) + λh(x), (4)

where f(·; ·) is the local loss function, λ is a regularization

term, Ezi∼Dk
stands for the analytical expected local loss

function, and h(x) is a regularizer function. In the Update

phase, the aggregator uses the Federated Averaging (FedAvg)

algorithm [39] to update the global model ωt+1 for the next

iteration as follows:

ωt+1 ← ωt +
1

N

N∑

n=1

F t+1
n (5)

After training, we use the final global model to predict the

original fine-grained matrices starting from the original coarse-

grained ones, effectively super-resolving the entire network

traffic matrix.

V. DATA PROCESSING AND METHODOLOGY

To validate effectiveness of ResCue, we evaluate our model

over both datacenter and WAN traffic data. We consider the

GÉANT network dataset [15] and the Meta datacenter traffic

data [16]. GÉANT dataset includes 10, 772 traffic matrices

constructed using Interior Gateway Protocol (IGP), NetFlow

data aggregated from all edge links, and Border Gateway

Protocol (BGP) from the GÉANT network. Meta datacenter

production traffic includes hundreds of thousands of 10-Gbps

nodes. The dataset is obtained through a combination of Meta-

wide monitoring systems and per-host packet header traces,

and collected over a 24-hour span from three different clus-

ters—Frontend, Database, and Hadoop—located in Facebook’s

Altoona Data Center. In this work, we only consider intra-

cluster traffic.

A. Coarse-grained Traffic Matrix Generation

In this work, we consider coarse-grained measurements, i.e.,

spatially aggregated traffic volume, to build a training set for

the super-resolution model. While in datacenter architectures,

we naturally have access to hierarchical traffic data - i.e., from

pod-level (coarse-grained) to rack-level (fine-grained) mea-

surements, where a pod consists of multiple racks (typically

10-48 racks per pod, depending on the specific design), this

is not the case for GÉANT network dataset. To generate the

datasets for experiments, we had to perform pre-processing,

which we detail herein.

WAN Traffic. To adapt our inference problem to (GÉANT)

WAN dataset, we employ a clustering procedure where geo-

graphically proximate nodes are grouped together, simulating

a coarse view of the network. In particular, we use K-means

clustering to group network nodes, where the number of

clusters K is determined by our desired scale factor s, where

K = N/s and N is the total number of nodes. Once the

clusters are formed, we aggregate the traffic between clusters

by summing the traffic between all pairs of nodes belonging to

different clusters to generate LR matrices. Formally, we create

the coarse-grained matrix Mc by aggregating traffic volumes

between clusters: Mc(i, j) =
∑

n∈Ci,m∈Cj
Mf (n,m), where

Ci and Cj represent the sets of nodes in clusters i and j
respectively.

Datacenter Traffic. Given the presence of multi-level traffic

data, we simply employ a hierarchical approach that leverages

the natural rack and pod structure. We first create the fine-

grained traffic matrix Mf by aggregating rack-to-rack traffic

volume using a time window of 10 seconds. To create the

coarse-grained matrix, we select N racks per pod and ag-

gregate their traffic in order to preserve a fixed upsampling

factor for our super-resolution model. This results in a pod-

level matrix M
(1)
c where T

(1)
c (i, j) =

∑
r∈Ri,s∈Rj

Mf (r, s),
with Ri and Rj representing the sets of N selected racks

in pods i and j respectively. For even coarser representa-

tions, we further aggregate traffic at the pod level. Given

a scale factor k, we combine traffic from k adjacent pods:

M
(k)
c (m,n) =

∑
i∈Pm,j∈Pn

M
(1)
c (i, j), where Pm and Pn are

sets of k adjacent pods. This process yields a series of coarse-

grained matrices M
(k)
c of size |P |/k×|P |/k, where |P | is the

total number of pods. The resulting matrices serve as inputs

for our super-resolution model, aiming to reconstruct finer-

grained rack-level traffic from the corresponding aggregated

representations.

Data Normalization. For both datasets, we apply min-max nor-

malization to both granularities and generate input-output pairs

for each time step t, splitting them into training, validation,

and test sets (70:15:15 ratio). Each traffic matrix is further

subjected to quantile clipping and square root normalization

operations to remove outliers and normalize the value distri-

bution.

VI. EVALUATION RESULTS

Next, we describe the experimental settings and discuss the

performance of our proposed approach for fine-grained traffic

matrix prediction.
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Fig. 3: Performance in terms of MAE (MB) of ResCue varying

the number of clients of the federated settings with scale factor

2, compared with the fully centralized model.

A. Matrix Inference Baselines

In computer vision, super-resolution has been successfully

used for tasks such as enhancing medical images, improving

satellite imagery, and upscaling low-quality video content.

Despite its widespread use in these areas, the application of

super-resolution techniques to networking data, particularly

traffic matrices, remains largely unexplored. Network traffic

data presents unique challenges due to its temporal nature,

sparsity, and complex patterns that differ significantly from

image data. We compared our model against popular super-

resolution architectures from the field of computer vision [40],

[33], [30]. Very Deep Super-Resolution (VDSR) [30] employs

a very deep convolutional network, inspired by VGG-net, with

a final model comprising 20 weight layers with cascading

small filters. Super-Resolution Convolutional Neural Network

(SRCNN) [33] is a benchmark deep learning architecture used

for super-resolution, consisting of three convolutional layers.

We further consider Bicubic interpolation [40], a classical

spatial interpolation technique often used in image processing,

and a recent interpolation method for fine-grained traffic

estimation [24]. Specifically, the latter reconstructs end-to-end

traffic matrix in finer time granularity from sampled traffic

traces, using a combination of fractal interpolation, cubic

spline interpolation, and the weighted geometric average algo-

rithm. For simplicity, we refer to it as Fractal. Although this

work relies on time granularity, we adapt their interpolation

technique to our spatial case.

B. Evaluation Metrics

In this work, we evaluate our approach leveraging the Mean

Absolute Error (MAE) as the main error metric. As a com-

monly used metric for regression problems, MAE measures

the average magnitude of the errors between the predicted and

actual values, without considering their direction. However, in

this work we consider a weighted version of MAE, defined as

follow:

WMAE =
1∑n

i=1 wi

n∑

i=1

wi|yi − ŷi|

Where yi and ŷi are the actual and predicted values, respec-

tively, wi are the weights associated with each observation

(with higher weights assigned to peak traffic volumes), and
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Fig. 4: Evaluation of ResCue (centralized) in terms of MAE,

varying the scale factor. Each scale factor corresponds to a dif-

ferent resolution of the coarse-grained traffic matrices. Lower

values indicate better performance. (a) Performance over Meta

datacenter network production traffic. (b) Performance over

GÉANT network traffic (i.e. WAN).

n is the number of samples. Given the sparse nature of the

traffic matrix data, we aim to measure the inference accuracy

by penalizing models that make mistakes over peak traffic

volumes. In the rest of the paper, we will use MAE to denote

the weighted-MAE unless indicated otherwise.

C. Experimental settings

In our work, we evaluate our approach by following a

centralized and distributed setting for the training process. For

the centralized training, we leverage Adam optimizer, with an

initial learning rate set to 10−3, and a learning rate scheduler

to halve it to 5×10−4 after 105 minibatch updates. The model

is trained with a minibatch size of 16 and a L1 loss function

for optimization. Further, we train our model for 50 epochs.

We deploy two different optimizers for federated training: each

client uses an Adam optimizer with a learning rate of 0.001
locally, whereas the aggregator uses a Stochastic Gradient

Descent (SGD) procedure with a learning rate of 1.0 to update

the global model. Moreover, our federated training process

leverages a minibatch of size 16 and a L1 loss function. We

run each federated training for 100 rounds. Experiments are

conducted on a server equipped with 4 Nvidia Tesla T4 GPUs.

D. Impact of the Number of Clients

We start evaluating the impact of the number of clients

during the training in our federated setting, measuring the

performance of the model on unseen fine-grained traffic

matrices across both WAN and datacenter network traffic

(Fig. 3). Before the training, each client receives a unique, non-

overlapping portion of the original fine-grained traffic matrix

that corresponds to the ground truth data (Section V-A). Subse-

quently, clients generate their own coarse-grained versions of

the fine-grained sub-matrix. We fixed the scale factor at 2 for

each client. The number of submatrices is proportional to the

number of clients of the federated setting. Since the GÉANT

network has only 22 hosts, in order to distribute one unique

sub-matrix to each client, we do no consider more than 10
clients, as the coarse-grained data generation produces 3× 3-

size images. A smaller size for the training set would not be

significant for our evaluation results.
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Fig. 5: Performance comparison of methods in terms of MAE across different scale factors (SF), over (a) GÉANT network and

(b) Meta DCN datasets. ResCue variants demonstrate superior performance compared to traditional (Bicubic) and fractal-based

approaches.

The results for WAN traffic dataset show a clear decreasing

trend, where error values tend to lower while increasing the

number of clients. The federated process effectively creates a

composite model that encapsulates the knowledge gained by

each client about its specific portion of the network. Client’s

traffic matrices have a smaller size than the fine-grained one,

which is determined from the number of clients itself, resulting

in an advantage in terms of pattern discovery for the super-

resolution model.

We further evaluate ResCue over the Meta datacenter traffic

and vary the number of clients within a wider range (i.e., 4
to 20 clients), given the significantly larger number of nodes

(i.e., racks) available. Somewhat surprisingly, the aggregated

model outperforms its centralized counterpart when less than

8 clients participate in the federated learning process. The

performance slightly begins to degrade with the increase of

clients participation. Within this specific network, traffic is

often concentrated between specific areas (i.e., pods), while

other communication paths see little to no traffic. Indeed,

as we increase the number of clients beyond 8, each sub-

matrix becomes smaller and potentially sparser. This increased

sparsity means that each client has access to fewer non-zero

entries, which represent actual traffic patterns. Consequently,

the clients struggle to learn meaningful patterns from their

increasingly limited and sparse data subsets.

E. Impact of Scale Factors

Figures 4b and 4a report the performance in terms of MAE

of our proposed super-resolution model across different scale

factors, for both datasets. For datacenter networks (Fig. 4b),

we observe that the model maintains a stable performance,

with MAE values ranging between approximately 0.12 and

0.15 MB. As specified in Section V-A, to generate coarser

view of the network traffic (i.e., scale factors greater than 2),

adjacent pods are clustered together. Interestingly, the model

resilience suggests that it can effectively infer rack-level traffic

not only from individual pod-level aggregates but also from

clustered pod data with larger scale factors, indicating that the

model captures underlying traffic patterns that persist even as

the level of aggregation changes.

For wide area networks (Fig. 4a), instead, we observe a

different trend. The model’s performance gradually decreases

as the scale factor increases, indicated by the rising MAE

values. The best performance is achieved at a scale factor

of 2, with an MAE of about 0.042 MB. The performance

remains relatively stable for scale factors 3 and 4, with MAE

values around 0.044−0.045 MB. However, there’s a noticeable

degradation in performance for scale factors 5 and 6, with

MAE values reaching approximately 0.047 MB and 0.06 MB,

respectively. The increasing error range at higher scale factors

indicates growing uncertainty in predictions as the level of

clustering increases. This trend also reflects the increasing

challenge of accurately predicting fine-grained traffic patterns

from more heavily clustered data.

F. Fine-Grained Traffic Inference Baselines and Knowledge-

Sharing Analysis

We then measure how ResCue can effectively reconstruct

complete fine-grained traffic measurements without relying on

shared information between clients within the federated learn-

ing process (see Section III-B). We compare our approach with

“overlapping” scenarios, where clients can share information

about each other sub-matrices. This approach translates to dis-

tributing portions of the same fine-grained traffic matrix with

different degrees of overlap. With this in mind, we consider the

following ResCue variants. ResCue-C, the centralized version,

processes all network data in a centralized way. ResCue-

NO implements federated learning with non-overlapping sub-

matrices, where each client works independently on its unique

network portion. ResCue-O introduces a 50% overlap between

adjacent sub-matrices, such that clients possess up to 50%

of the network knowledge of the remaining clients. ResCue-

F provides clients with full network knowledge, where the

full traffic matrix is shared as ground truth to all participating

clients.

Fig. 5 shows a comparison between ResCue variants and

the baselines for both DCN and WAN datasets. Across all

methods, we see a consistent trend of increasing MAE as the

scaling factor increases from 2 to 6, reflecting the increas-

ing difficulty of the super-resolution task at higher scales.

However, the ResCue variants consistently outperform the
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Fig. 6: Visual comparison between ResCue, state-of-art super-resolution models and the bicubic baseline, with different scale

factors (×2, ×3 and ×6). The leftmost column shows input coarse-grained traffic matrices, while the second column presents

the corresponding fine-grained ground truths. We report the performance in terms of MAE for each model. The lowest error

is highlighted in bold.

traditional Bicubic and Fractal methods across all scaling

factors, demonstrating the effectiveness of our approach. As

expected, among the ResCue variants, ResCue-C and ResCue-

F generally show the lowest MAE, suggesting that the full

network knowledge positively impacts performance. Some-

what surprisingly, ResCue-F (Full knowledge) only marginally

outperformed ResCue-O, showing a 5% lower MAE, suggest-

ing that the 50% overlap in ResCue-O captures most of the

benefits of information sharing without the privacy concerns

of full data exchange. More interestingly, ResCue-NO (i.e.,

non-overlapping sub-matrices) achieves comparable results

to ResCue-F and ResCue-O performance, and consistently

low error values across scale factors. This promising result

proves the effectiveness of our proposed federated approach

in predicting fine-grained measurements from coarse-grained

ones, with only partial visibility of the full network. Notably,

the performance gap between traditional and ResCue methods

widens as the scaling factor increases, highlighting the robust-

ness of ResCue to more challenging upscaling tasks. Even with

a scale factor of 6, representing a dramatic reduction in the

number of clusters and consequently a highly abstracted view

of the network, our model maintained impressive prediction

accuracy.

TABLE I: Evaluation of TM reconstruction accuracy between

ResCue (centralized), ResCue-NO (No-Overlap) and super-

resolution baselines in terms of MAE, on a test set of Meta

datacenter traffic [16] with different scale factors.

Scale Bicubic VDSR SRCNN ResCue ResCue-NO

×2 0.553 1.41 0.32 0.15 0.14

×3 1.29 1.181 0.46 0.164 0.192

×4 3.51 2.375 0.62 0.19 0.21

×5 3.121 2.15 0.712 0.32 0.37

×6 4.19 3.11 1.52 0.514 0.56

G. Comparison Against Super-Resolution Architectures

We then compare our approach against the super-resolution

models from the field of computer vision, i.e., SRCNN, VDSR,

and Bicubic, reporting in Table I the MAE for different scale

factors. While these models have shown remarkable results in

image enhancement tasks, our experiments reveal that they fall

short when applied directly to network traffic matrix inference.

Our ResCue model consistently outperformed both SRCNN

and VDSR across various metrics and scaling factors. For

instance, at a scale factor of 3, ResCue achieved a 40% lower

Mean Absolute Error (MAE) compared to SRCNN and a

25% lower MAE than VDSR. This performance gap widened

further at higher scale factors, with ResCue showing a 60%
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and 45% reduction in MAE compared to SRCNN and VDSR,

respectively, at a scale factor of 6. These results underscore

that a super-resolution method cannot be directly applied to

network traffic inference tasks and achieve optimal results.

SRCNN and VDSR, despite their sophisticated convolutional

architectures, struggle to capture the intricate interdependen-

cies present in network traffic data. Their reliance on local con-

volutional operations, which work well for images, proves less

effective in modeling the global patterns and characteristics of

fine-grained network traffic. Instead, our approach consistently

outperforms the other methods and shows robustness against

coarser versions of the training sets (i.e., larger scale factors).

Furthermore, Fig. 6 reports a visual comparison between

state-of-art super-resolution models and ResCue global model

after the federated training on Meta datacenter traffic data.

Our approach infers fine-grained traffic patterns with higher

accuracy compared to the baselines and shows robustness

across different scale factors.

H. Balancing Inference Accuracy and Training Efficiency

Efficient training is particularly critical in federated learning

scenarios where data is distributed across multiple clients,

and rapid model updates are essential for maintaining up-to-

date performance. This is especially true in modern network

environments, where the volume of data available for training

models has become a performance bottleneck. In this analysis,

we evaluate the trade-off between the inference accuracy of

our distributed approach and the efficiency in terms of training

time.

Fig. 7 illustrates the trade-off between Mean Absolute Error

(MAE) and training time for various models. ResCue-NO,

our federated learning approach with non-overlapping sub-

matrices, achieves the best balance between accuracy and

efficiency. With a MAE of approximately 0.39 MB and a train-

ing time of around 1000 seconds, it significantly outperforms

traditional computer vision models like SRCNN and VDSR

in both aspects. The centralized ResCue model shows slightly

better accuracy of about 0.4 MB, but requires nearly twice the

training time (around 2000 seconds). This comparison reveals

that ResCue-NO sacrifices only a minimal amount of accuracy

- 2.5% in terms of MAE - for a nearly 50% reduction in

training time compared to its centralized counterpart.

In Fig. 8, we provide an analysis of how the number of

clients affects the training time in our federated setup. In

this analysis, we fixed the number of rounds at 20 and the

scale factor to 2. We leverage the Meta datacenter traffic

as it contains the larger number of points per data sample

(i.e., 108 × 108 = 11664 values per training sample and

216 × 216 = 23328 per ground truth sample). Interestingly,

as the number of clients increases from 4 to 8, there’s a

slight increase in training time, peaking at 8 clients with about

1400 seconds. Beyond this point, the training time gradually

decreases as more clients are added, reaching around 700
seconds with 18 clients. This trend is due to the initial com-

munication overhead of coordinating more clients, followed

by the benefits of splitting the original fine-grained matrix

into unique, non-overlapped smaller portions. The peak at 8
clients likely represents the point where coordination costs

are balanced by the advantages of distributed computation.

As the number of clients increases further, the benefits of

parallelization and traffic matrix splitting outweigh the coor-

dination overhead, resulting in reduced overall training time.

While the centralized ResCue model achieves slightly lower

MAE, the federated ResCue-NO offers significantly reduced

training time, especially as the number of clients increases.

This makes our federated model more scalable and adaptable

to large networks.

VII. CONCLUSION

In this work, we propose a super-resolution model to infer

network traffic volumes with fine granularity. We present the

design of ResCue, a super-resolution-based Deep Residual

Network architecture to predict fine-grained traffic from the

coarser representation of the network. To address partial

network visibility in multi-domain network scenarios, where

complete network knowledge is often infeasible, we leverage

a federated learning procedure. Results on real-world datasets

validate that our proposed method achieves a 55% reduction in

terms of weighted Mean Absolute Error (MAE) compared to

state-of-art super-resolution architectures and a 87% reduction

compared to existing interpolation and fine-grained traffic

inference approaches. Furthermore, our distributed learning

design achieves comparable performance to its centralized

counterpart while reducing training time up to 80%.
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