
Prediction of Mobile-App Network-Video-Traffic
Aggregates using Multi-task Deep Learning

L. Pappone∗ F. Cerasuolo† V. Persico† D. Ciuonzo† A. Pescapé† F. Esposito∗

∗Saint Louis University †University of Napoli Federico II

Abstract—Traffic prediction has proven to be useful for several
network management domains and represents one of the main
enablers for instilling intelligence within future networks. Recent
solutions have focused on predicting the behavior of traffic aggre-
gates. Nonetheless, minimal attempts have tackled the prediction
of mobile network traffic generated by different video application
categories. To this end, in this work we apply Multi-task
Deep Learning to predict network traffic aggregates generated
by mobile video applications over short-term time scales. We
investigate our approach leveraging state-of-art prediction models
such as Convolutional Neural Networks, Gated Recurrent Unit,
and Random Forest Regressor, showing some surprising results
(e.g. NRMSE < 0.075 for upstream packet count prediction while
NRMSE < 0.15 for the downstream counterpart), including
some variability in prediction performance among the examined
video application categories. Furthermore, we show that using
smaller time intervals when predicting traffic aggregates may
achieve better performances for specific traffic profiles.

I. INTRODUCTION

Modeling network traffic is of utmost relevance for edge-
cloud applications supporting softwarized edge infrastruc-
tures. Understanding traffic peculiarities helps manage dif-
ferent tasks, such as traffic engineering, risk minimization
in network planning and provisioning, management of the
Quality of Services/Experience, activity detection of profile
users, anomaly detection, and even real traffic emulation
for testing purposes. Nonetheless, this process is hindered
by the increase of complexity and variability of the traffic
that currently traverses networks. In particular, the global
spread and growing usage of mobile devices have profoundly
changed network traffic. For instance, according to a recent
Ericsson Mobility Report, during 2019–2020 5G subscriptions
increased to 220 million covering approximately 15% of
world population and are expected to reach 8.8 billion by the
end of 2026. The 2020 Mobile Internet Phenomena instead
reported how video streaming applications are going to be the
principal mobile traffic component, constituting the 65% of
all downstream traffic. Traffic prediction techniques can be
deployed to guarantee more reliable and efficient services, to
optimize bandwidth resource allocation and to identify traffic
anomalies. Predicting mobile network traffic has become even
more challenging, given the high variability of traffic and
network conditions, and the stringent QoS requirements of
novel applications. Other challenges include traffic encryption,
with the broad adoption of TLS or other protocols such as

QUIC, mobile apps weekly updates, potential device/operating
system/app-version diversity, and a lack of public datasets. To
solve these challenges, several authors have recently proposed
mobile traffic prediction techniques, with or without using
machine learning, but mostly focusing on traffic aggregated
in time, using several aggregation intervals, typically larger
than one minute [1, 2, 3, 4]. As we detail in Sec. II, prior
work has demonstrated the lack of a ”panacea” method to deal
with traffic prediction. This fact, along with the very large set
of variables affecting learning models, makes the problem of
mobile traffic aggregate prediction an interesting and important
problem worth exploring further.
Our contribution. To this aim, in this paper we investigate
the suitability of state-of-art Machine Learning (ML) and
Deep Learning (DL) models to predict mobile video network
traffic aggregates. In particular, we design a set of multi-task
DL models to predict mobile-app network traffic aggregates
and analyze their behavior when using different short-time
aggregation windows with a time scale of the order of mil-
liseconds. Given the mobile applications generating network
traffic, we then report how the corresponding traffic profiles
affects models performances. We found a strong dependency
between ML/DL models and the specific mobile traffic profile,
nevertheless showing promising performances when consider-
ing a finer-grain aggregation granularity.

The rest of the paper is organized as follows. In Sec. II
we provide a background of related literature on (mobile-app)
network traffic aggregates prediction. In Secs. III and IV we
describe the proposed aggregated-traffic prediction methodol-
ogy. We detail the considered experimental approach in Sec. V
and discuss our conclusion in Sec. VI.

II. RELATED WORK

Recent work aimed at predicting aggregated traffic features
e.g., volume or network packet rates over time. Such aggregate
prediction considered a diverse set of time-resolutions, ranging
from time intervals smaller than one second in [5], to a few
seconds in [6, 7], to minutes [4, 8, 9], or even hours and
days in [4, 10, 11]. The majority of such existing prediction
models has been designed for fairly large aggregation time
windows [4, 8, 9, 11]. This is due to the challenges represented
by the volatile nature of network traffic in small time scales
and in part due to the lack of suitable datasets. Only a few
recent authors have attempted to predict aggregated network
traffic using a short-term prediction [5, 6, 7, 12], and only
a small group predicted mobile network traffic [12], as weISBN 978-3-903176-48-5 ©2022 IFIP

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on February 02,2023 at 13:42:02 UTC from IEEE Xplore. Restrictions apply.

do. For example, Lazaris and Prasanna [7] proposed an in-
teresting approach tackling traffic aggregations using jumping
windows [13] i.e., non-overlapping observation time intervals,
showing, however, how the prediction is more accurate with
larger time windows as the traffic variance decreases. Recently
authors also proposed different aggregation techniques that
deal with online traffic processing, optimizing algorithmic cost
and complexity [14, 15, 16]. Such predictions utilized different
features, spanning a variety of applications, e.g., traffic matrix
estimation [6, 7], bandwidth estimation [5], and users demand
prediction [12]. In this work, we analyze the behavior of DL
models concerning the prediction of mobile network traffic
aggregates. Differently to prior work in this area, our goal is to
dissect the impact that the aggregation parameters have on the
prediction of well-known aggregated features such as volume
and count of packets. The use of recurrent neural networks to
deal with traffic aggregate prediction problem has been also
investigated, e.g., using LSTMs [7, 12, 17, 18], and GRUs [6],
showing how each of them outperform statistical time series
approaches such as ARIMA models. For example, Labonne
et al. [5] compared performance of Deep Neural Networks
(DNNs) and Random Forest Regression (RFR) algorithms in
traffic prediction problem using aggregated CAIDA datasets
and showing that RFR outperforms DL approaches in short-
term bandwidth estimation, considering very short aggregation
windows (less than 1s). As these papers, we also compare
several state-of-art ML and DL approaches and their behavior
when predicting mobile network traffic aggregates, but over
short-time aggregation windows, and by analyzing how the
traffic nature impacts on model performances. Based on real
traffic traces generated from known mobile applications, we
then identify the impact that specific traffic profiles have on
models prediction performances.

III. METHODOLOGY

Short-term Traffic Prediction Problem. We consider the
prediction of short-term network traffic aggregates generated
by mobile applications as the objective of this work. We
consider a bidirectional flow (biflow) as the elementary unit
for the prediction task, which is defined by the classical
5-tuple (source IP, source port, destination IP, destination
port, and transport-level protocol) including both directions
of communication. Formally, an aggregate of network traffic
consists of all the (biflow) packets whose arrival time τp (i.e.,
the timestamp of packet p) falls within an aggregation time
interval of fixed duration ∆M = (tn+1 − tn),∀n, i.e., the
interval [tn, tn+1], where tn ≜ n∆M and ∆M is in the
order of milliseconds. For each biflow, all the packets are
processed to compute aggregates according to the specific
aggregation operation (e.g., number of bytes, packet rate, etc.).
The aggregation process produces, for each feature, a time-
series where each element is a traffic aggregate extracted
from the nth interval, denoted with xn. The predictions are
performed based on the observation of a set of Fin features
evaluated on the W most recent aggregation intervals, namely
[tn+1−W , tn+2−W], . . . , [tn, tn+1]. Accordingly, this choice

implies a memory window of size W and a memory time equal
to TM = W∆M , namely the overall amount of past time the
model uses as input to predict the next aggregate. We consider
TM as an hyperparameter we set for our experiments. The
features obtained by aggregation during the aforementioned
intervals, denoted with xn, ...,xn−(W−1), represent the input
of the prediction problem. The aim of this work is to predict
a set of Fout traffic features associated to a future aggregation
interval [tn+1, tn+1 + TP], where TP denotes an application-
specific prediction horizon. The features calculated in the
prediction horizon (to be predicted) are grouped in the vector
yn+1, which represents the (desired) outcome of the prediction
problem. Accordingly, the prediction model is specified as

yn+1 = M(xn,xn−1, ...,xn−(W−1)) (1)

We use a single (shared) multitask architecture that allows
to solve multiple (and diversified) inference tasks at the
same time. Our algorithm predicts the Fout aggregated traffic
features via a single DL architecture. This approach constitutes
a significant difference in terms of computational complexity
with respect to a multiple single-task learning approach.
Traffic Aggregation and Preprocessing. Packet aggregation
is the core step of our pre-processing phase. The sets of
downstream and upstream packets of the generic biflow are
denoted with Pdw and Pup, respectively. Biflow traffic packets
are submitted to the aggregation process and the resulting
input-output pairs will be used to feed the learning model.
The aggregation is implemented using a window which en-
closes packets and produces the actual aggregated value. We
implemented the aggregation process using a temporal jumping
window of length ∆M (i.e., the sliding unit of the window is
equal to the window size). In this case, consecutive windows
always include non-overlapping sets of packets. Therefore,
∆M is defined as the aggregation granularity: each packet of
each biflow that occurs within this time is properly aggregated
according to the specific feature of interest. As a result of the
process, for each ∆M a single aggregate value is generated
for each feature, so the resulting time-series will be generated
for the single biflow. We aim at predicting Fout = 4 traffic
aggregated features based on Fin traffic features evaluated
on the previous W aggregation intervals. For simplicity, the
nature and set of the input and output aggregated features
coincide (thus Fin = Fout = F), and they differ only in
the aggregation granularity. Specifically, for each biflow, the
following input features are considered for the nth interval:

• bni ≜
{∑

p bp : tn < τp ≤ tn+1 ∧ p ∈ Pi

}
i ∈ {dw, up}
denotes the downstream/upstream traffic volume, i.e., the
sum of application-layer bytes of downstream/upstream
packets Pdw arrived during the aggregation time-interval.
In the above formula, bp denotes the number of
application-layer bytes of packet p.

• cni ≜
{∑

p : tn < τp ≤ tn+1 ∧ p ∈ Pi

}
i ∈ {dw, up}

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on February 02,2023 at 13:42:02 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Incremental windowing: xn is the nth vector element of
the multivariate aggregated time series of length Ni, extracted
from the biflow Bi; W = size of the memory window (input),
n+ 1 = index of the vector value to be predicted (output).

denotes the count of downstream/upstream packets Pdw

arrived during the aggregation time-interval.
The model is then trained to predict the value of the Fout

features associated to the prediction horizon. Formally, the
desired output vector is yn+1 ≜ {b̄n+1

dw , b̄n+1
up , c̄n+1

dw , c̄n+1
up },

where:

b̄n+1
i ≜

{∑
p

bp : tn+1 < τp ≤ (tn+1 + TP) ∧ p ∈ Pi

}
,

c̄n+1
i ≜

{∑
p

: tn+1 < τp ≤ (tn+1 + TP) ∧ p ∈ Pi

}
,

i ∈ {dw, up}.

Such formulation includes the following two different cases:
• TP = ∆M , i.e., the aggregation time-interval to predict

next aggregate values is the same as the one used in
memory. In such a case, it simply holds yn+1 = xn+1;

• TP ̸= ∆M i.e., the aggregation time-interval is different
from the one used during the pre-processing. This corre-
sponds to the general case yn+1 ̸= xn+1.

Prediction Strategy. Our approach is based on a jumping
window of size W and unit stride, which is grown incre-
mentally [19] (Fig. 1). Specifically, incrementally-sized sets
of samples are grouped together until reaching the prescribed
maximum size W of the prediction window (i.e., predictions
can be made as soon as the first aggregate sample is avail-
able). That leads to model the border effects, (i.e., the early
behaviours), which are achieved through a left zero-padding
up to W samples. That is in contrast with a fixed windowing
approach which considers predicting only the values that come
after W actual samples. Therefore, for the generic time instant
n, this procedure results in an input matrix In (of size F×W ,
F being the number of input features with granularity ∆m)

and a prediction vector yn+1 (of size F × 1, representing the
desired output), constructed applying the windowing approach
described above to each of the aggregated time-series within
the considered set (e.g., those that are generated by the same
app biflows) (Fig. 1). Accordingly, in the latter case, for the
ith aggregated time series, with corresponding length Ni, this
procedure produces (Ni − 1) prediction samples.

IV. MOBILE-NETWORK TRAFFIC MODELING

Multitask DL approaches. Convolutional Neural Networks
(CNNs) are a relevant example of DL architectures deriving
from NNs and inspired by visual mechanism of living organ-
ism. CNNs were firstly devised to solve image recognition
tasks, then successfully employed in natural language process-
ing and recently in network traffic analysis.
Recurrent Neural Networks (RNNs) are a further deep NN

family that have been widely leveraged in the field of traffic
prediction. The reason of their usage is their suitability to
handle time-series whose elements have temporal correlation.
The main difference with respect to CNNs, is the presence
of backward and forward connection between layers, also
denoted as loops. The most common variants are Long Short
Term Memory (LSTM) and Gated Recurrent Unit (GRU).
These networks are made of elementary components (the
units) having internal mechanisms (the gates) that can regulate
the information flow by learning which values in a time
sequence are important to recall or forget. In this work, we
used a GRU optimized implementation [20] because it has a
simpler structure than LSTM and therefore fewer parameters to
train. The architecture considered are a CNN composed of two
convolutional layers with 32 and 64 filters, respectively, and a
GRU with 200 units, set based on state-of-art works [21, 22].
Multitask Loss Specification and Training Procedure. The
training phase of DL models is performed following an
iterative procedure when executing the stochastic gradient
descent (first-order) optimization algorithm for minimizing a
loss function. Training is performed leveraging a subset of NB

biflows associated with the considered app, which constitutes
the training set T . The latter is formally defined as

T =

NB⋃
i=1

{
In(Ai),y

n+1(Ai)
}Ni

n=1
(2)

In other terms, the training set corresponds to the union
of NB sets, with the ith set containing all the prediction
samples associated to the ith aggregate time-series Ai (of
length Ni). In what follows we denote with N the total number
of samples within T . We remark that the considered prediction
strategy differs from those commonly employed in time-
series forecasting, which leverage past observations to update
the model or learn a specific parameter. Indeed the latter
philosophy is practically infeasible in real-world (especially
online) scenarios due to the complexity related to the fine-
grained (aggregate) prediction task and the sophisticated pre-
diction model considered. On the basis of these considerations,
we have chosen the biflow-based cross-validation granular-
ity. Furthermore, since the applied architectures leverage the

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on February 02,2023 at 13:42:02 UTC from IEEE Xplore. Restrictions apply.

multitask learning approach, the minimization of the loss
function depends on the specific parameter to predict (viz. the
prediction task to address). We focus on the prediction of F
parameters (viz. aggregated traffic features) of the next time-
series aggregate collected in the vector yn+1 which represent
the outputs of the DL architecture. Consequently, we intend
to minimize a weighted sum of the losses of the F prediction
tasks considered, namely:

L
(
θshared, {θf}Ff=1

)
≜

F∑
f=1

λf Lf

(
θshared,θf

)
(3)

The weight λf represents the importance level of the f th

task in the multitask objective function to be optimized, for
simplicity, we select the uniform weighting λf = 1/F ,
i.e., no specific preference is given to upstream/downstream
volume/packet count. In the above equation θshared collects
the set of parameters associated with the layers shared by the
different tasks, whereas θf collects the parameters associated
to the task-specific layers of the f th task. In detail, we aim to
minimize the MSE loss for all the F prediction tasks, namely:

Lmse
f (·) ≜ 1

N

NB∑
i=1

Ni−1∑
n=1

(ŷn+1
f (Ai)− yn+1

f (Ai))
2 (4)

In the above equation, we recall that N denotes the overall
number of training samples, and Ni the number of sam-
ples (viz. aggregates) of the ith time-series Ai. Additionally,
yn+1
f (Ai) denotes the f th traffic parameter associated to

the (n + 1)th time window of the time-series Ai, whereas
ŷn+1
f (Ai) denotes the corresponding prediction.

Single-task ML baselines. Random Forest Regressor (RFR)
represents a more complex implementation of the well-known
decision trees-based ML algorithm. The RFR employs as
estimators several decision trees. The number of these trees
is a configurable model hyperparameter. As a result, trees
constitute a forest, namely an ensemble of B decision trees.
The forest is built at training time leveraging the so called
“bootstrap aggregating” (bagging) and random-feature selec-
tion to mitigate over-fitting. Each tree is trained in order to
minimize the MSE between the predictions and the actual
values. RFR is employed for each of the F = 4 aggregated
features to be predicted.
Implementation Aspects. We perform the optimization of
the multitask DL architectures by employing the Adam op-
timizer with a batch size of 32, a learning rate of 10−3, and
exponential decay rates for the estimates of the first-order
and second-order moments equal to 0.9 and 0.999. Each DL
architecture is trained for 150 epochs. To prevent overfitting
we leverage the early-stopping technique with a patience of 4
epochs and a minimum delta of 10−4 measured on the training
loss. Concerning the RFR algorithm, we consider B = 100
tree estimators in the forest, leaving the maximum depth of
each tree as default.

V. EXPERIMENTAL EVALUATION

Dataset Preprocessing. We leveraged the public dataset
MIRAGE-VIDEO which includes Wi-Fi traffic, collected

by 280+ experimenters and generated by eight mobile
video apps belonging to four custom video categories:
cloud VR (DiscoveryVR, FulldriveVR), short video
(Instagram, TikTok), video chat (Messenger, Zoom)
and video on-demand (Netflix, PrimeVideo). Ranging
from 15 to 80 minutes, the duration of each capture session
depends on the type of the specific video app activity e.g., a
sequence of one-minute-long short videos, or a two-hour-long
movie on-demand.
We processed the dataset to aggregate raw packets constituting
the biflows for each examined application. The related biflow
data are then processed by the aggregation module which
implements an incremental-window approach and provides the
sequence of aggregate values for the four features considered.
Subsequently, data are reshaped for the training phase and
grouped in samples. Each sample constitutes the memory of
the model of size W i.e., W traffic aggregates that will be
learned, along with the related ground truth, represented by
the next aggregate value. Data is then submitted to scaling
operation to be ranged within (0, 1). We evaluate predic-
tion performances via a ten-fold cross-validation performing
summary statistics i.e., average and standard deviation of the
evaluation metrics considered.
In Figs. 2a and 2b we report the distributions of the packet
count and packet rate per biflow for each application. Ap-
plications can be grouped according to similar distributions
(not matching the corresponding video categories): Netflix
and DiscoveryVR show a more intense downstream ac-
tivity with respect to upstream (Fig. 2a) and also share a
highly similar distribution of packet rates (Fig. 2b). Similarly,
Instagram, Messenger and Tiktok have few packets
per biflow in both directions, along with a very short biflow
duration, resulting in low packet rates.
Evaluation Metrics. Model performance is evaluated using
two variants of Root Mean Squared Error (RMSE).
Per-biflow RMSE. RMSE is computed for each biflow, hence
it is measured over the biflow sequence and averaged over the
total number of biflow observations. The final RMSE will be
the average of the errors resulting from each biflow.

RMSEm ≜

∑T
t=0

√
1
Nt

∑Nt−1
n=0 [x̂t

m(n+ 1)− xt
m(n+ 1)]2

T
(5)

where Nt denotes the number of predictions from the tth

biflow, xt
m(n) the sequence of values of the mth feature ob-

served from the tth biflow, x̂t
m(n) the corresponding sequence

of values provided by the prediction model and T the total
number of biflows.
Normalized RMSE (NRMSE): it is a useful variant that nor-
malizes the RMSE by the ground truth range of values.

NRMSEm ≜ RMSEm / (max(xm)−min(xm)) (6)

where RMSEm denotes the RMSE computed for the mth

feature and xm the ground truth sequence observed (i.e., the
entire training set).

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on February 02,2023 at 13:42:02 UTC from IEEE Xplore. Restrictions apply.

(a) Number of packets (b) Packet rate (c) Upstream Packet Count. (d) Downstream Packet Count.

Fig. 2: Distributions of the count of packets (a) and packet rate (b) per biflow in both down/up directions for each application,
where whiskers denote the 5th and 95th percentile, whereas the box limits represent 25th and 75th percentile. Performance of
models in terms of NRMSE for upstream (c) and downstream (d) count of packets, with ∆M = 100 ms and TM = 500 ms.

(a) Upstream Packet Count. (b) Downstream Packet Count. (c) Upstream Volume. (d) Downstream Volume.

Fig. 3: Performance trend when lowering ∆M for different memory time (TM) values and TP = 100 ms. Ascendent performance
indicates lower (better) RMSE.

(a) Upstream Packet Count. (b) Downstream Packet Count. (c) Upstream Volume. (d) Downstream Volume.

Fig. 4: Aggregation interval (∆M) attaining lowest (optimum) RMSE for different memory time (TM) values; TP = 100 ms.

Prediction Results and Model Comparison. In Figs. 2c and
2d models performances are compared, fixing ∆M = 100ms
and using TM = 500ms. For the applications1 with a
low packet rate and few packets per biflow (i.e., TikTok,
Instagram, Messenger), the error is lower with respect to
those with a high packet rate and a denser downstream activity
(i.e., Netflix, DiscoveryVR). These results show that our
considered models lead to higher accuracy when the traffic
profile has a low packet rate. Each traffic inactivity period
corresponds to a sequence of zero-values. The denser is the
activity, the higher is the prediction error for each model. CNN
outperforms the other models for Netflix, DiscoveryVR
and Zoom and for the downstream features (e.g. ≈ +30%
w.r.t. GRU and RFR for Zoom), showing that the model is
more accurate with a denser traffic activity. RFR outperforms
the others for the applications with low packet rates (e.g.
≈ +2% for Tik Tok), as GRU and CNN achieve similar

1In what follows, we omit performance for PrimeVideo due to large
evaluation time required.

overall performances.
In the following analysis, we examine the existence of trends
occurring when considering smaller granularities in the traffic
aggregation process. We leverage the CNN model for this
analysis since it requires the least computational time during
the training phase.We found that the reduction of ∆M leads
to an improvement of the prediction performance, namely
a decrease of the error metric considered. We repeat the
experiments for different values of the memory time TM

to understand how the number of aggregate samples in the
model memory impacts the prediction accuracy. In Fig. 3
we show the heatmap obtained for different combinations of
TM and ∆M with TP fixed at 100ms. The results show
that, specifically for downstream traffic, lowering ∆M leads
to a decreasing error trend. For the packet count, almost all
applications show a decreasing RMSE trend independently
from the TM value selected. Additionally, the downstream
packet count shows the highest number of decreasing error
trends, showing that its prediction benefits from adopting a

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on February 02,2023 at 13:42:02 UTC from IEEE Xplore. Restrictions apply.

smaller ∆M regardless of the application and the memory
time TM . For the other features, the memory time TM affects
the performances differently for each application and each
feature. Overall, downstream traffic presents a more significant
number of decreasing RMSE trends than upstream (+16.6%)
and shows that a finer granularity allows for a more accurate
pattern discovery in the presence of denser traffic activity.
In contrast, the applications with less traffic activity are also
less sensitive to the granularity value. Finally, we investigate
the ∆M value producing the lowest error for each value of
the memory time TM . Fig. 4 reports the granularity through
which the best result is achieved. As a result, we found that for
TP = 100ms and downstream features, the results obtained
from our experiments with ∆M = 25ms outperform those
with larger aggregation granularities, showing that predicting
aggregates in the order of milliseconds when traffic activity is
relatively denser leads to better prediction accuracy. Further,
we found that the memory time affects performance, see e.g.,
TikTok downstream volume and DiscoveryVR upstream
packet count. Concerning the upstream features, we found that
the best granularity strongly depends on the combination of
application, TM and ∆M .

VI. CONCLUSION

In this work, we have investigated modeling and prediction
of mobile-app traffic. Multiple predicted features together
with the short-term prediction horizon considered allow us
to comprehend the finest variation of the traffic in relation
to the specific application considered, thus representing a
paramount tool in edge-cloud network management tasks. We
have accurately examined the suitability of DL models to the
prediction of traffic aggregates, using a Multi-Task Learning
approach. Our experimental analyses—involving real user-
generated datasets—have shown that mobile traffic is particu-
larly irregular and unbalanced when considering upstream and
downstream directions, hence putting to the test the state-of-
art models that recently has been widely used in the context of
traffic prediction and classification. We found that the specific
input application notably impacts prediction performance, in
relation to traffic profiles and users’ activity. Nonetheless,
regarding the employment of finer aggregation granularity,
the prediction error can be lowered as the models can learn
patterns that are unrevealed when larger aggregation is carried
out. As future work, we want to extend our analysis on other
public datasets for mobile traffic.

ACKNOWLEDGMENT

The work of Lorenzo Pappone and Flavio Esposito has been
supported by NSF # 1836906 and # 1908574.

REFERENCES
[1] C. Zhang, M. Fiore, and P. Patras, “Multi-service mobile traffic forecast-

ing via convolutional long short-term memories,” in IEEE International
Symposium on Measurements & Networking (M&N), 2019, pp. 1–6.

[2] C. Zhang and P. Patras, “Long-term mobile traffic forecasting using
deep spatio-temporal neural networks,” in 18th ACM Mobihoc, 2018,
pp. 231–240.

[3] C. Zhang, X. Ouyang, and P. Patras, “ZipNet-GAN: Inferring fine-
grained mobile traffic patterns via a generative adversarial neural net-
work,” in 13th ACM CoNEXT, 2017, pp. 363–375.

[4] C.-W. Huang, C.-T. Chiang, and Q. Li, “A study of deep learning
networks on mobile traffic forecasting,” in IEEE 28th PIMRC, 2017,
pp. 1–6.

[5] M. Labonne, J. López, C. Poletti, and J.-B. Munier, “Short-term flow-
based bandwidth forecasting using machine learning,” arXiv preprint
arXiv:2011.14421, 2020.

[6] N. Ramakrishnan and T. Soni, “Network traffic prediction using recur-
rent neural networks,” in 17th IEEE ICMLA, 2018, pp. 187–193.

[7] A. Lazaris and V. K. Prasanna, “Deep learning models for aggregated
network traffic prediction,” in 15th IEEE CNSM, 2019, pp. 1–5.

[8] A. Bayati, K. Khoa Nguyen, and M. Cheriet, “Multiple-step-ahead traffic
prediction in high-speed networks,” IEEE Commun. Lett., vol. 22, no. 12,
pp. 2447–2450, 2018.

[9] Y. Hua, Z. Zhao, R. Li, X. Chen, Z. Liu, and H. Zhang, “Deep learning
with long short-term memory for time series prediction,” IEEE Commun.
Mag., vol. 57, no. 6, pp. 114–119, 2019.

[10] T. P. Oliveira, J. S. Barbar, and A. S. Soares, “Computer network traffic
prediction: a comparison between traditional and deep learning neural
networks,” Int. Journal of Big Data Intelligence, vol. 3, no. 1, pp. 28–37,
2016.

[11] Y. Huo, Y. Yan, D. Du, Z. Wang, Y. Zhang, and Y. Yang, “Long-term
span traffic prediction model based on STL decomposition and LSTM,”
in IEEE 20th APNOMS, 2019, pp. 1–4.

[12] H. D. Trinh, L. Giupponi, and P. Dini, “Mobile traffic prediction from
raw data using LSTM networks,” in IEEE 29th PIMRC, 2018, pp. 1827–
1832.

[13] J. Traub, P. M. Grulich, A. R. Cuéllar, S. Breß, A. Katsifodimos,
T. Rabl, and V. Markl, “Efficient window aggregation with general
stream slicing.” in EDBT, 2019, pp. 97–108.

[14] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: an
ensemble of autoencoders for online network intrusion detection,” arXiv
preprint arXiv:1802.09089, 2018.

[15] E. Viegas, A. Santin, A. Bessani, and N. Neves, “Bigflow: Real-time
and reliable anomaly-based intrusion detection for high-speed networks,”
Future Generation Computer Systems, vol. 93, pp. 473–485, 2019.

[16] W. Iqbal, J. L. Berral, D. Carrera et al., “Adaptive sliding windows
for improved estimation of data center resource utilization,” Future
Generation Computer Systems, vol. 104, pp. 212–224, 2020.

[17] A. Azzouni and G. Pujolle, “NeuTM: a neural network-based framework
for traffic matrix prediction in SDN,” in IEEE/IFIP NOMS, 2018, pp.
1–5.

[18] A. Lazaris and V. K. Prasanna, “An LSTM framework for modeling
network traffic,” in IFIP/IEEE IM, 2019, pp. 19–24.

[19] G. Aceto, G. Bovenzi, D. Ciuonzo, A. Montieri, V. Persico, and
A. Pescapé, “Characterization and prediction of mobile-app traffic using
Markov modeling,” IEEE Trans. Netw. Serv. Manag., pp. 1–1, 2021.

[20] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[21] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, “End-to-end
encrypted traffic classification with one-dimensional convolution neural
networks,” in IEEE ISI, 2017, pp. 43–48.

[22] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Mobile en-
crypted traffic classification using deep learning: Experimental evalua-
tion, lessons learned, and challenges,” IEEE Trans. Netw. Serv. Manag.,
vol. 16, no. 2, pp. 445–458, 2019.

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on February 02,2023 at 13:42:02 UTC from IEEE Xplore. Restrictions apply.

