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Abstract—Network traffic telemetry plays a crucial role in the
management of modern networks. Estimation of the network
traffic matrix is a widely recognized problem whose solutions
can span a diverse set of applications. Current approaches
to traffic matrix inference through statistical methods often
rely on assumptions about the matrix structure, which may
be invalid in certain scenarios. Data-driven methods, instead,
often use detailed information about the network topology that
may be unavailable or impractical to collect. To overcome these
challenges, we propose a super-resolution technique for traffic
matrix inference that leverages coarser measurements to predict
fine-grained network traffic. Furthermore, we devise a distributed
learning procedure and adapt our model to scenarios of partial
network visibility. Our experiments on real network traces
demonstrate that the proposed approach can infer fine-grained
network traffic with high precision. Moreover, we prove that
our distributed approach improves the inference accuracy with
respect to its centralized counterpart, significantly lowering the
training time, even in scenarios with partial network knowledge.

Index Terms—traffic estimation, super resolution, deep learn-
ing, federated learning

I. INTRODUCTION

The improvement of computer network efficiency involves

complex analytics and time-sensitive troubleshooting. How-

ever, collect the correct volume of network traffic at the op-

timal time remains a challenging task, especially considering

the vast scale of modern networks and the presence of hidden

network locations. The analysis of network traffic data to

obtain insights about the behavior of a distributed system is

a fundamental area of study. There are numerous methods for

developing network models [2], [3], [4], but there are many

challenges and costs in the measurement of network traffic [5],

[6]. Much of this difficulty comes from a large number of

nodes at which the traffic must be measured, as well as the

amount of data that must be collected. For example, a single

high-speed network interface within a given region could gen-

erate hundreds of gigabytes of (unsampled) flow statistics per

day if fully utilized, while the whole network might generate

several gigabytes of simple network management protocol

(SNMP) statistics per day [7], [8]. Many aspects of the Internet

are characterized by decreasing visibility of important network

properties, which is in tension with the Internet’s role as

critical infrastructure [9]. Researchers have sought out ways
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to infer network patterns from the least amount of data stored

and collected [10], [11], sometimes because such data is not

available, since, before the (performance) problem arose, the

frequency of measurements was kept low.

Super-resolution to reconstruct a more accurate, represen-

tation of network traffic. A goal of this work is to explore

how a computer vision technique called Super-Resolution

(SR) can help infer visibility during network monitoring and

telemetry operations of a distributed system. In particular, we

focus on the inference of fine-grain network traffic details only

using aggregate measurements.

In our approach, we start with a Low Resolution (LR)

traffic matrix, represented as a heat-map. This LR matrix is

a coarse-grained measurement derived from the original fine-

grained traffic matrix, which we refer to as the High Resolution

(HR) traffic matrix. To construct the LR matrix, we consider

different sub-networks of the original network, grouping hosts

in various ways depending on the dataset under test. Using

an SR technique, we then reconstruct a more accurate, HR

representation of the traffic that we would have observed on

a given subnetwork, aiming to minimize the inference error.

Our method employs a supervised learning approach, training

a deep neural network with numerous HR traffic matrices

paired with their corresponding LR versions. Once trained,

this neural network is capable of inferring the high-resolution

traffic matrix when only its LR counterpart is available.

We also apply the concept of Federated Learning (FL) [12]

to harness the capabilities of multiple network agents while

simultaneously minimizing communication overhead among

these agents. This methodology is particularly suited for

addressing issues of partial observability.

Federated learning for partial network visibility. In many

real-world network scenarios, full network observability is

often unattainable due to various constraints. For instance,

in multi-domain networks spanning different administrative

entities, privacy concerns or regulatory restrictions may limit

data sharing. Similarly, in large-scale distributed systems or

edge computing environments, centralized data collection can

be impractical due to bandwidth limitations or latency is-

sues. Other examples include IoT networks with resource-

constrained devices or cloud-based services with geographi-

cally dispersed data centers [13].

Our FL-based approach can infer fine-grained network

measurements when complete network visibility is not directly

available. Our method leverages partial knowledge from dis-

tributed clients, each possessing visibility into a sub-network.

The federated clients collaboratively train a global super-

resolution model without sharing raw data, preserving privacy
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and reducing data transfer overhead. The resulting global

model, updated with aggregated insights from various sub-

networks, is then used to predict the entire traffic matrix.

Contributions and paper organization. Inspired by the field

of image processing and generative methods, in general, and

by the super resolution [14], in particular, we propose an

algorithm for traffic matrix inference that we call Enhanced

Deep Traffic Matrix Super-resolution(EDTMSR).

We expand on our initial work [1] by thoroughly analyzing

the performance of our distributed traffic matrix estimation

technique in different scenarios: We propose a new FL

methodology and formalize a new traffic matrix prediction

problem to deal with partial network knowledge scenarios. We

further evaluate our model in terms of the estimated traffic

matrix quality by using two new metrics commonly used

in computer vision. We study how the performance of our

EDTMSR is sensitive to variations of visibility overlaps, that is,

different traffic matrix portions are distributed among clients

during the training phase. We also extensively evaluate how

the distributed learning performance is affected by different

percentages of client participation in the training process.

We validate our model against a datacenter traffic (i.e., Meta

dataset [15]) and a WAN traffic (i.e., GEANT dataset [16]),

comparing the centralized and distributed variants with ML

and DL baselines. We then demonstrate how the use of the

federated learning technique makes distributed training of the

EDTMSR model more robust to possible clients’ failures and

show how the federated learning process achieves competitive

results w.r.t. its centralized counterpart while performing fewer

model training rounds. Finally, we evaluate our distributed

learning algorithm in terms of training loss with different scale

factors.

The rest of the paper is organized as follows: in Section II

we discuss the related work and in Section III we formulate

the traffic matrix estimation problem. Section IV details our

proposed model and its federated learning counterpart. In

Section V we describe our experimental setting and, then,

in Section VI we discuss our evaluation results, showing the

benefits of EDTMSR. Finally, in Section VII we conclude the

paper.

II. RELATED WORK

Traffic Inference and Telemetry. Being able to infer which

are the routes that pass through the network of an operator is

a complex but profitable task [17], with applications to traffic

engineering, performance analysis, capacity planning, traffic

loads change and its causes, network security, and business

intelligence [11], [18]. Related work in this area can be divided

into two main categories: those that consider a TM a purely-

spatial concept [19], [20] and those for which a TM is a

time series of TMs [21], [22], [23]. The former problem is

similar to matrix completion problems [24], [11], the latter

approach implies a strong correlation between TMs over time.

These data are low effective rank, as shown in [21], i.e., there

are strong correlations between columns (or rows), such that

a measured TM can be approximated by a matrix having a

relatively small rank. The results of the methods using these

low-rank data show a strong dependence on this temporal

correlation.

However, spatio-temporal compressive sensing cannot work

with the highly non-linear relationships between high- and

low-resolution network traffic samples, as they expect that

linear relationships subsist between sparse traffic and inference

matrices. In addition, many of the proposed traffic inference

methods require the collection and analysis of fine-grained

traffic matrices, as well as detailed information on the topology

and structure of the network under consideration. Our method

is able to overcome these limitations. We learn the mapping

between coarse-grained metrics (low-resolution matrices) and

their fine-grained (high-resolution) counterpart by using our

super-resolution approach.

Super-resolution Techniques. Super-resolution is a generative

process that represents a fundamental tool for a wide range

of real-world applications, such as medical imaging [25],

[26], security [27], [28], surveillance, and other computer

vision tasks [29], [30]. The literature on Single Image Super-

Resolution (SISR) is vast [31]. Early approaches to the super-

resolution problem use interpolation techniques based on sam-

pling theory [32], [33], [34], while others used image statistics

to improve the results in image reconstruction [35], [36], [37].

Super-resolution approaches are typicalle applied to im-

ages and rely on different techniques, e.g., neighbor embed-

ding [38], [39], [40], [41], sparse representation methods [42],

[43], [44], [45], [46], clustered patch-spaces [47], image

self-similarities [48], [49], and geometric transformations of

patches in order to increase the number of examples and

perform data augmentation [50]. The first super-resolution

algorithm was proposed by Dong et al. [51], who demonstrated

how CNN can be exploited to overcome the state-of-art image

reconstruction accuracy. Other SR approaches have exploited

a Generative Adversarial Network (GAN) [52] to achieve

promising results [53].

In [54], the authors used mobile network traffic maps on a

city scale and applied, for the first time, a super-resolution

based approach to learn the telecommunication power pat-

terns from fewer measurement probes. They utilized super-

resolution in networking for the creation of physical mobile

network matrices, characterized by the presence of a spatial

relationship between the cells of the matrices themselves.

Our work, on the other hand, focuses on the traffic matrices

generated within any network. Given the nature of Internet

traffic flows, these traffic matrices lack physical location

association. We created a location-independent network traf-

fic inference method. Furthermore, we trained the proposed

EDTMSR model both in a centralized and distributed way,

with federated learning.

Federated Learning. Machine learning models are often

built from the collection of extensive datasets to enable the

detection, classification, and prediction of future events. Due

to bandwidth, storage, and other business operations and non-

technical concerns, it is often impractical to send all the data

to a centralized location.

Analyzing and learning from data distributed among many

clients without exposing data, is a goal pursued by many

research communities. In addition to methods based on encryp-
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tion [55], several publications have had the goal of preserving

privacy by keeping data locally on clients and using a cen-

tralized server for training [56]. While some form of privacy

may be guaranteed with our algorithm, we do not claim that

privacy is a design principle, as our approach alone (similar

to other federated learning architectures) is not resilient to

privacy attacks [57], [58]. However, we conduct experiments

to show how our model trained via federated learning is robust

to the varying participation of federated clients in the training

process, and that the model trained with federated learning is

able to outperform the results obtainable with the traditional

centralized training methods.

III. PROBLEM DEFINITION

In our work, we consider the traffic matrix (TM) as the

main data unit for our experiments. In network management,

a TM is often represented as a snapshot of the amount of

traffic exchanged between all network hosts at a specific time.

Formally, the element TM(i, j) of a TM describes the volume

of traffic, expressed in bytes, measured between source i and

destination j. We express a TM as a 2-dimensional array

TM ∈ R
N × R

N , where N is the number of nodes in the

network. With TM(i, j; t), we denote the traffic from node i

to j, averaged over the time interval [t, t+∆t].
Traffic Matrix Super-Resolution. The objective of our Traf-

fic Matrix Super-Resolution problem is to infer fine-grained

(high-resolution) network traffic data, using as a starting point

measurements collected at a lower spatial resolution in the

network. In our approach, the low-resolution (LR) traffic

matrix TMLR represents spatially coarse-grained data, which

are aggregated traffic measurements over larger network areas

or clusters. For example, this could be pod-level traffic in

a datacenter or regional traffic in a WAN, where multiple

individual nodes are grouped together. This LR matrix can

be defined as the output of an aggregation process:

TMLR = A(TMHR;α), (1)

where A is an aggregation mapping function, TMHR is

the High-Resolution (HR) traffic matrix representing fine-

grained measurements, and α denotes the parameters of the

aggregation process, such as the grouping strategy or aggre-

gation level. Instead of modeling the degradation function as

a downsampling operation as in [1], we directly work with the

aggregated measurements.

Remark. Although other convolutional models exploit tem-

poral relation between subsequent matrices during our train-

ing phase, e.g., in [54], considering both space and time would

lead to significant growth of the problem size and the costs of

a federated training. Therefore, we only consider the spatial

dimension.

The goal is to recover an approximation T̂M
HR

of the

ground truth HR traffic matrix, denoted as TMHR, starting

from its LR version TMLR:

T̂M
HR

= F (TMLR; θ), (2)

where F is the super-resolution model and θ represents its

parameter vector. The recovered HR traffic matrix T̂M
HR

is

also denoted as super-resolved traffic matrix TMSR.

Our traffic matrix inference task is hence modeled by the

following optimization problem:

θ̂ = argmin
θ

L(T̂M
HR

, TMHR) + λΦ(θ), (3)

where L(T̂M
HR

, TMHR) is the loss function between the

predicted HR traffic matrix T̂M
HR

and the ground truth traffic

matrix TMHR, Φ(θ) is a regularization term and λ is the

trade-off parameter.

Distributed Traffic Matrix Inference. The traditional ap-

proach to distributed deep learning often requires data from

distributed devices to be sent to a centralized server for model

training, using a Distributed Stochastic Gradient Descent (D-

SGD) algorithm. This procedure can present significant risks

in terms of data privacy. Moreover, a complete view of the data

is not always guaranteed. In our work, we integrate our model

with a federated deep learning approach that addresses these

issues by enabling distributed devices to collaboratively train

a global model while retaining their data locally. With this

strategy, we distribute either overlapping or non-overlapping

portions of the traffic matrix across different clients, each

representing a segment of the network.

We then aim to reconstruct the original matrix by utilizing

the model parameters learned by these distributed agents. In

our case, each client will receive equally-sized portions of the

original matrix p√
N
× q√

N
(assuming N is a perfect square for

simplicity). Let
√
N = k, then each client n with 1 ≤ n ≤ N

would receive:

TM(i,j) = TM

([
(i− 1)p

k
+ 1,

ip

k

]
,

[
(j − 1)q

k
+ 1,

jq

k

]) (4)

where n = (i− 1)× k + j.

We then formulate our distributed learning problem as a

three-phase procedure: Initialization, Aggregation, and Up-

date. During Initialization, each client receives a pretrained

global model ωt from the aggregator. The clients then train

this model using their local data Dk. During the Aggregation

phase, edge devices send their local gradients to the cloud

aggregator. The local loss function for each edge device k is

given by:

min
x∈Rd

Fk(x) =
1

Dk

∑

i∈Dk

Ezi∼Dk
f(x; zi) + λh(x) (5)

Here, f(·; ·) is the local loss function, λ is a regularization

term, and h(x) is a regularizer function.

In the Update phase, the aggregator uses the Federated

Averaging (FedAVG) algorithm [12] to update the global

model Wt+1 for the next iteration as follows:

Wt+1 = Wt + α

C∑

c=1

pc(W
t+1
c −Wt) (6)

where C is the total number of clients, pc represents the

relative importance of client c (which could be based on factors

such as data volume or quality), and α is a learning rate

parameter.
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Fig. 1: Comparison of validation loss varying the number of

residual blocks in the super-resolution model.

IV. OUR SOLUTION: SUPER-RESOLUTION FOR TRAFFIC

MATRIX INFERENCE

In this section, we describe how we solve the TMSR

problem presenting the details of our Enhanced Deep Traffic

Matrix Super-Resolution Network (EDTMSR). We also explain

the training process of EDTMSR through federated learning.

A. Model Architecture

Given the efficiency of residual blocks proposed in [14],

we design our architecture with a number of stacked residual

blocks, each comprising two convolutional layers separated

by a Parametric ReLU [59] activation function. Each con-

volutional layer is equipped with small 3x3 kernels and

64 feature maps, followed by a batch normalization layer.

We experimentally evaluated the optimal number of residual

blocks for our task. As shown in Fig. 1, the analysis led

us to design our core model with Nb = 4 residual blocks,

which enable a more stable training process and a smoother

convergence compared to deeper architectures. The merged

feature map then undergoes up-sampling to match the desired

scale in the final layer. The up-sampling is realized through a

sub-pixel convolution layer [60].

For a faster convergence and to achieve a better general-

ization [14], we first train our model in a scale factor x2
scenario and then use these pre-trained weights and parameters

to initialize our model when running over traffic matrices with

higher scale factors. We experienced how this not only speeds

up the learning process but also improves model accuracy.

In Fig. 2, we report the validation loss obtained using

scale factor 2 trained from scratch and scale factor x4 using

the pre-trained model on scale factor x2. The figure shows

a faster convergence on scale factor 4, demonstrating the

effectiveness of our initialization strategy. This improved

convergence can be attributed to the correlation between scale

factors, which we consider as interrelated tasks.

B. Federated Learning for Performance and Partial Traffic

Visibility Inference

This section describes the federated learning configuration

for our EDTMSR model. Our goal is to evaluate the ability

of such model to predict the fine-grained measurements from

real coarse-grained ones. Training a neural network with a
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Fig. 2: Comparison of validation loss for scale factors (SF) x2

and x4 on the GÉANT dataset. Model with scale factor x4 is

pre-trained on traffic matrix with scale factor x2.

federated approach allows each client (i.e., a single node of the

federated network) to perform traffic measurements according

to different criteria and with arbitrary sampling rates.

We explore two possible federated training configurations:

the first has the main objective of speeding up the training

procedure of EDTMSR by leveraging multiple agents and

distributing tasks. The second configuration aims to deal with

partial visibility of each agent in the global network while

still maintaining acceptable model accuracy. Both solutions

leverage FedAvg [12] as a federated learning algorithm to train

a more robust and performing model. The rest of this section

describes the details of both training settings.

Training Boost Configuration. With such a configuration, we

assume the network data is available to all the participants,

thus all clients can observe and measure the traffic of all

computer network nodes. In the federated learning process,

we randomly distribute an equal amount of traffic matrices to

the participating clients.

A consequence of such random splitting of traffic matrices

is that the distribution of traffic patterns on each client training

set may be unbalanced. However, in the evaluation section, we

show that such an unbalanced distribution does not hinder the

performance of our traffic inference. Although the assumption

of full visibility of this configuration of EDTMSR may be

strong, this setting is particularly effective to reduce the

convergence time of the model.

Partial Traffic Visibility. In this second configuration, we

remove the assumption that all clients participating in the fed-

erated training process can observe and measure the traffic of

all nodes of the network. This is because clients belonging to

different network partitions or regions may be unable to obtain

such information but still be interested in estimating traffic

volumes. With this configuration, we aim to assess to what

extent the distributed training approach enables visibility gains

into the network traffic of other clients, despite the lack of

global knowledge of the network. By limiting visibility to only

a sub-portion of the entire network, each federated client has to

monitor, aggregate, and process a smaller traffic matrix repre-

senting only a portion of the entire network. This configuration

is particularly relevant in contexts where agents are diverse

network operators that own different regions and/or do not

wish to share network information with peers. Furthermore,

we study how this partial traffic knowledge might overlap by
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tweaking the percentage of network knowledge shared among

the clients. In a full non-overlapping scenario, each client has a

unique subset of nodes, representing completely disjoint views

of the network. As we increase the overlap percentage, we

gradually introduce shared nodes among clients and analyze

scenarios where multiple entities have visibility into common

parts of the network.

V. EXPERIMENTAL SETTINGS

In this section, we describe the datasets used for our

evaluation and detail the approach we employed for their

preprocessing. Then, we discuss the experimental environment

used to produce and test our proposed EDTMSR architecture in

both centralized and federated settings, and the metrics used

for its evaluation.

A. Datasets

Deep Learning (DL) techniques require extensive and rep-

resentative data to build an effective neural network model,

characterized by both high performance, in terms of training

time, and accuracy in the reconstruction of TMs. In this

work, we leverage a dataset collected from GÉANT [16].

This anonymized dataset consists of traffic matrices built using

Interior gateway protocol (IGP) routing information, NetFlow

data collected overall edge links, and Border Gateway Protocol

(BGP) the GÉANT network routing information sampled

every 15 minutes for 4 months.

The network in which the traffic matrices were collected is

formed by 23 nodes. We also use the production traffic from

a Meta datacenter [15] to validate our model. The dataset

includes hundreds of thousands of 10-Gbps nodes, where

each sample contains packet header information and additional

metadata such as locality and packet length. The value (i, j)
of a traffic matrix corresponds to the traffic going from node

i to node j, expressed in Kbit.

B. Low-Resolution Traffic Matrix Generation

To generate the coarse-grained measurements necessary for

training our model, we employ the following approach. For the

GEANT network, we utilize a K-means clustering algorithm

to group hosts based on their network distances. The traffic ex-

changed between these clusters is then aggregated to populate

the elements of the LR matrix. This process effectively creates

a coarser representation of the network traffic patterns. For

each HR matrix in our dataset, we generate a corresponding

LR matrix using this method, forming the paired samples (LR,

HR) used in our training process. This approach allows us

to simulate scenarios where only aggregated, coarse-grained

measurements are available, while still maintaining a relation-

ship with the underlying fine-grained traffic patterns we aim to

reconstruct. After applying K-means clustering to group hosts

into K clusters, we can define the aggregation function A in

Eq. 1 as:

TMLR
i,j =

∑
p ∈ Ci

∑

q∈Cj

TMHR
p,q (7)

Here, Ci and Cj represent the sets of hosts belonging to

clusters i and j, respectively.

For the Meta datacenter network dataset, we construct our

HR matrices by considering the traffic exchanged between

racks, aggregated over a 10-second time window. To generate

the corresponding LR matrices, we sum the traffic from racks

belonging to the same pod. To maintain a consistent scale

factor between HR and LR matrices, we consider only N

racks per pod when building the HR matrix. This approach

allows us to easily obtain the LR version by aggregating the

traffic between the N racks for each pod. With this approach,

we create a hierarchical representation of the network traffic,

with racks as the fine-grained level and pods as the coarse-

grained level. Formally, let TMHR ∈
∑

R(P ·N)×(P ·N) be

the HR traffic matrix, where P is the number of pods, and

N is the number of racks per pod considered. The element

TMHR
i,j represents the traffic from rack i to rack j over a 10-

second window. The LR matrix TMLR ∈ R
P×P is obtained

through the aggregation function A defined in Eq. 1, where

each element of TMLR is computed as:

TMLR
k,l =

∑
i ∈ Pk

∑

j∈Pl

TMHR
i,j (8)

Here, Pk and Pl represent the sets of rack indices belonging to

pods k and l, respectively. With this representation, we capture

the aggregation of rack-level traffic to pod-level traffic and

maintain a consistent relationship between the HR and LR

matrices.

C. Training and Implementation Details

To train our model in a centralized way, we use the Adam

optimizer [61] with a starting learning rate of 10−3, β1 = 0.9,

β2 = 0.999, and ϵ = 10−7.

One critical aspect of the FedAvg [12] algorithm is that

it requires two optimizers, one for the clients and one for

the server. The client optimizer is only used to compute local

model updates on each client, and for this reason, we used the

same Adam optimizer we already described for the centralized

training setting. The server optimizer applies the averaged

update to the global model at the server. We used Stochastic

Gradient Descent (SGD) [62] with a learning rate of 1.0 as the

server optimizer. For both centralized and federated training

settings, we set the minibatch size at 16, that is 16 traffic

matrices are fed to the algorithm for each training round.

We trained our models through the L1 loss and perform a

maximum of 30 training epochs and 103 steps (batches of

samples) for each epoch.

For the federated learning process, we used the TensorFlow

Federated [63] library. The hardware platform used for both

centralized and federated training and testing is equipped with

4 Nvidia Tesla V100 GPUs and Intel Xeon Gold CPU.

D. Evaluation Metrics

To comprehensively assess the quality and fidelity of our

generated high-resolution malware traffic matrices, we employ

three complementary metrics: Mean Absolute Error (MAE),



6

1 2 3 4 5 6 7

0.03

0.06

0.09

0.12

M
A

E
(M

B
)

Scale x2 Scale x3 Scale x4 Scale x5 Scale x6

1 2 3 4 5 6 7

0.25

0.51

0.76

1.01

S
S

IM

1 2 3 4 5 6 7

No. Clients

5.34

10.68

16.02

21.36

P
S

N
R

(d
B

)

(a) GEANT dataset

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.33

0.66

0.99

1.32

M
A

E
(M

B
)

Scale x2 Scale x3 Scale x4 Scale x5 Scale x6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.25

0.49

0.74

0.99

S
S

IM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

No. of Clients

0.24

0.49

0.73

0.98

P
S

N
R

(d
B

)

(b) Meta datacenter traffic dataset

Fig. 3: Performance comparison of the proposed federated learning model on GEANT and Meta datacenter traffic datasets.

(a) GEANT dataset results for 2 to 6 clients. (b) Meta datacenter traffic dataset results for 2 to 10 clients. Each subfigure

displays Mean Absolute Error (MAE) (top), Structural Similarity Index Measure (SSIM) (middle), and Peak Signal-to-Noise

Ratio (PSNR) (bottom) as a function of the number of clients and upscaling factors.

Structural Similarity Index (SSIM), and Peak Signal-to-Noise

Ratio (PSNR). MAE provides a straightforward measure of

pixel-level differences between generated and original images,

offering insight into overall accuracy. SSIM [64] evaluates

the perceived quality of generated images by considering the

structural similarities. The closer to 1, the more similar are the

compared images:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(9)

Where µx, µy are the means of input images x and y, σx, σy

are the standard deviations, σxy is the covariance, and C1, C2

are constants to avoid instability.

PSNR quantifies the ratio of maximum signal power to noise,

helping us assess how well important details are preserved in

the synthetic images.

PSNR = 10 · log10
(

MAX2

MSE

)
(10)

Where n is the number of observations, MAX is the maximum

possible pixel value, and MSE is the mean square error.
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EDTMSR-PERF x6

Fig. 4: Comparison of training losses between EDTMSR-C

(centralized) and EDTMSR-PERF (federated) for different

upscaling factors.

VI. EVALUATION RESULTS

In this section, we report the evaluation of our super-

resolution model for the TM inference problem leveraging a

federated learning approach. We first detail our model con-

figurations with different federated settings and evaluate their

performance (Sec. VI-A). Then, we compare our model in a

partial traffic visibility scenario against its centralized version

(Sec. VI-A2). We discuss EDTMSR performance in a federated

scenario using full network knowledge (Sec. VI-A1) and in a

partial network visibility scenario with different percentages

of shared knowledge between federated clients (Sec. VI-A3).

Further, we evaluate the resiliency of our distributed learning

approach to different percentages of federated clients drop in

Sec. VI-A4. Finally, we compare our model against multiple

baselines (Sec. VI-B).

A. Evaluating TM Inference with Federated Learning

In this work, we define two configurations called Fed-

erated Learning (FL) for Performance (EDTMSR-PERF)

and Federated Learning (FL) for Partial Traffic Visibility

(EDTMSR-PTV). Each configuration is characterized by dif-

ferent settings of the federated training process, determining

the characteristics of the distributed environment in which our

EDTMSR model is trained, with different data distribution

strategies. For EDTMSR-PERF, we set and analyze the impact

of the number of clients participating in the distributed training

process. However, in this configuration, we assume that each

client has full knowledge of the network, and the availability

of full-size fine-grained matrices for ground truth. Contrarily,

for EDTMSR-PTV configuration, we leverage the preprocess-

ing in Sec. V-B to determine the distribution of the traffic

matrices across the clients. Indeed, for this configuration,

we assume that clients only have partial knowledge of the

network and, consequently, only a portion of the original
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traffic matrix. We analyze the performance of EDTMSR-PERF

and EDTMSR-PTV configurations across all the considered

evaluation metrics defined in Sec. V-D.

1) Evaluation of EDTMSR-PERF configuration: Figure 3

show the performance of our proposed federated learning

model on two datasets: GEANT and Meta datacenter traffic.

We report the MAE, SSIM and PSNR - as functions of the

number of clients and upscaling factors. For the GEANT

dataset, we run experiments for 2 to 6 clients, while we extend

the evaluation for Meta traffic to 20 clients. This reason of a

different client range stems from the datasets’ characteristics.

The GEANT network’s limited host count restricted the max-

imum scale factor to x6, resulting in a minimum 3x3 coarse-

grained matrix. We omitted scales producing matrices smaller

than 3x3 due to performance limitations. Conversely, the Meta

dataset’s larger volume allowed evaluation up to 20 clients. For

GEANT, as we noted that performance tend to stabilize around

5 or 6 clients, we only report results up to 7 clients. The Meta

dataset presents a larger amount of data and number of hosts,

facilitating the extension of the analysis up to 20 clients, and

providing insights into performance trends over a wider range

of federated participants.

As expected, we observe that increasing the number of

clients generally leads to slightly worse performance, partic-

ularly for lower upscaling factors. This trend is more pro-

nounced in the Meta dataset, where performance degradation

is noticeable as the number of clients increases. Moreover,

increasing the upscaling factor also results in worse per-

formance, as each client has fewer samples to work with.

Interestingly, for larger scale factors (≥ ×4), the impact of

the number of clients is almost negligible. In these cases, the

federated approach’s performance tends to converge closer to

that of the centralized approach. These findings suggest that

distributing data samples among more clients can be beneficial

for predicting traffic matrices, particularly for coarser-grained

measurements, due to the diversity of data in the distributed

learning process and the reduced overfitting.

2) EDTMSR-PTV vs. Centralized Configuration: In Fig-

ure 4, we first compare the training loss on a validation

set between EDTMSR-C, namely the centralized version of

our model (i.e. a single client with full network knowledge),

and EDTMSR-PTV configuration over 200 training rounds.

We consider EDTMSR-PTV with 4 clients, each possessing a

unique portion of the full matrix (i.e. no shared knowledge of

the network). The comparison reveals that EDTMSR-C version

slightly outperforms EDTMSR-PTV configuration. However, it

is noteworthy that the EDTMSR-PTV configuration achieves

excellent performance in terms of Mean Absolute Error

(MAE) and convergence, despite the lack of complete network

visibility. Interestingly, we observe that for smaller scale

factors (e.g., x2), the performance gap between the centralized

and federated versions is more pronounced. However, as we

move to higher scale factors (x6), the federated configuration

outperforms the centralized approach with faster convergence.

This crossover demonstrates the benefits of predicting fine-

grained traffic from distributed, highly coarse measurements,

particularly when dealing with larger-scale factors.

3) Evaluation of EDTMSR-PTV: In this experiment, we

show the performance of our proposed model trained across

multiple clients in partial network visibility scenarios. In

Figure 5, we analyze the impact of shared network knowledge

overlap across clients, varying the number of clients from 2 to

6 for GEANT and 2 to 10 for Meta. We report MAE, SSIM

and PSNR metrics as functions of the percentage of shared

knowledge in the network. We explore scenarios ranging from

0% overlap, i.e. each client has a unique subset of the network

and is trained on a sub-portion of the traffic matrix that only

includes the corresponding subset, to 100% overlap, i.e. an

equivalent configuration to EDTMSR-PERF, where clients are

given the full matrix as ground truth for training.

To generate the overlapping behavior, we set the percentage

of total nodes that are shared across clients. Every client

receives the same subset of selected shared nodes, along

with a unique subset of non-shared ones. The coarse view

of the network is generated following the methods described

in Sec. V-B. For the GEANT dataset, we employ k-means

clustering based on node locations to create the required

number of nodes for the coarse-grained network view. For the

Meta datacenter, we leverage the pod-rack interrelationship,

aggregating all rack traffic belonging to the same pod to

generate the coarse-grained (low-resolution) traffic matrix. To

obtain even coarser matrices, we further aggregate pod traffic

based on the nodes belonging to specific portions of the matrix

at the previous aggregation level. Nevertheless, increasing the

number of clients in the federated settings leads to a smaller

matrix size, as unique subsets of network nodes have to be

assigned to a number of clients.

For the GEANT network (Figure 5a), we observe that

varying the number of clients does not significantly impact

performance. However, as expected, increasing the overlap

percentage generally improves overall performance across all

metrics. Notably, even with 0% overlap, the model achieves

performance close to the fully overlapped case. In contrast, the

Meta dataset (Figure 5b) shows a more evident performance

degradation as the number of clients increases up to 10,

especially at lower overlap percentages. This result can be

attributed to the excessive sparsity of the large-size Meta traffic

matrix. With more clients, the likelihood that some clients will

receive inactive parts of the network (i.e., areas with low traffic

activity) is higher, leading to less informative training data

for those clients. However, it is worth noting that the model

achieves competitive performance even when distributing non-

overlapping sub-networks to a number of clients. This finding

demonstrates the feasibility of applying our super-resolution

model to a federated learning scenario without or only partially

sharing knowledge of network information between clients

while preserving privacy and data isolation.

4) Analysis of Client Participation Variability: In practical

scenarios, network nodes or clients may become unavailable

due to various reasons such as network failures, mainte-

nance, or resource constraints. By evaluating our model’s

performance under different client dropout conditions, we

investigate its resilience and applicability in dynamic, dis-

tributed environments. Moreover, this analysis suggests how

our federated learning approach performs when entire portions
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Fig. 5: Performance of our proposed model in federated settings for (a) GEANT dataset and (b) Meta datacenter traffic dataset.

For each dataset, the plots show Mean Absolute Error (MAE) (top), Structural Similarity Index Measure (SSIM) (middle), and

Peak Signal-to-Noise Ratio (PSNR) (bottom) as a function of the percentage of shared knowledge in the network. Results are

presented for varying numbers of clients - 2 to 6 in (a), 2 to 10 in (b) - in the federated learning setup.
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Fig. 6: Mean Absolute Error (MAE) vs Client Drop Percentage

for Meta dataset varying the number of clients in the federated

learning. Lower MAE indicates better performance. The trend

shows that higher drop percentages and fewer total clients both

lead to increased MAE, indicating degraded performance in

these scenarios.

of the network are removed. In Figure 6, we report the

MAE for Meta traffic dataset when varying the number of

clients and the clients drop percentage (i.e., the percentage

of the total number of clients that are removed from the

federated learning process). For this experiment, we consider

the EDTMSR-PTV configuration with 0% overlap. Our results

show that our model that the error significantly increases

when dropping almost 95% of the participating clients, as

expected. However, while this is more evident for a small

number of clients, contrarily, the model achieves low inference

error when more clients are considered. For example, with 10

clients and inference error shows less variability when varying

the drop percentage. This reveals that: (i) as we distribute

non-overlapping portions of the network to different clients,

many clients receive low-traffic activity portions that do not

contribute significantly to the global model update. Thus, their

absence has a minimal impact on overall performance; (ii)

smaller unique sub-matrices are distributed among clients,

making the overall process more robust to high drop percent-
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Fig. 7: Comparison over Meta datacenter traffic be-

tween variants of our proposed model - i.e., centralized

(EDTMSR-C), federated with partial traffic visibility and no

overlap (EDTMSR-PTV), and federated with 100% overlap

(EDTMSR-PERF) - and Bicubic [34], Decision Trees (DT)

[65], Random Forest (RF) [66], Support Vector Regressor

(SVR) [67], Gradient Boosting (GB) [68], Convolutional Neu-

ral Networks (CNN) [69] and Fractal model [70]

.

ages. This granular distribution ensures that the loss of any

single client does not result in a substantial loss of critical

information, maintaining model stability even at high dropout

rates.

B. Comparison with Baselines over Datacenter Traffic

To further validate the performance of EDTMSR, we com-

pare our solution against different baselines in terms of mean

absolute error (MAE), using the Meta datacenter production

traffic [15]. Among our baselines, we include bicubic in-

terpolation as the simplest matrix reconstruction technique,

some of the state-of-art ML-based predictors such as Decision

Trees [65], Random Forest [66], Support Vector Regressor

[67], and Gradient Boosting [68] and, as a DL counterpart,

we adapted ImageNet [69] Convolutional Neural Network
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Fig. 8: Visual comparison of Meta (Facebook) datacenter rack

traffic matrix. (a) Traffic matrix ground truth; (b) Predicted

traffic using Bicubic interpolation; (c) Predicted traffic using

EDTMSR-PTV (our model).

to the traffic matrix prediction problem. Furthermore, we

include a comparison with a fine-grained traffic estimation

approach [70]. This method infers end-to-end traffic matrices,

relying on temporal dependencies of sampled traffic traces

and employing a combination of techniques such as fractal

interpolation, cubic spline interpolation, and the weighted

geometric average algorithm. For simplicity, we refer to this

method as Fractal.

We consider EDTMSR-PTV in its fully distributed version,

where each client has a unique subset of the network nodes.

We use a four-hour-long pod traffic collection as our train-

ing set, aggregated by 10-second intervals. We subsequently

test the models on 10-minute rack traffic collected within

a different time from the training traffic data. We repeat

the experiments five times on the test set and average the

results. Figure 7 shows that our model, in its centralized

and distributed variants, outperforms all the baselines, includ-

ing the CNN, which performs the best among the selected

models. EDTMSR-C, the centralized version of our model,

improves the performance of the best baseline by 45% on

the Meta datacenter production traffic. Our distributed model

achieves comparable performance to the centralized version

for both variant EDTMSR-PTV and EDTMSR-PERF, while

the Bicubic interpolation shows a higher prediction error due

to the significant data loss obtained during the downsampling

operation. Figure 8 shows a visual comparison between the

traffic matrices inferred by the bicubic interpolation and our

distributed model (EDTMSR-PTV). The bicubic interpolation

is performed on the LR version of the rack traffic (i.e.,

by downsampling the test traffic matrix), while EDTMSR is

pre-trained on pod traffic aggregated within a different time

interval. Despite the sparsity nature of the traffic matrix, our

model can identify the peaks in the traffic volumes with high

accuracy.

VII. CONCLUSION

In this work, we proposed Enhanced Deep Traffic Matrix

Super-Resolution (EDTMSR), a super-resolution model for

fine-grained traffic matrix estimation. Through the use of

a super-resolution model to infer HR traffic matrices from

their corresponding LR version, this work provides a novel

inference technique that reduces the cost and complexity of

collecting, transferring, and analyzing network measurements.

We integrate our model with a distributed learning proce-

dure to deal with partial network visibility. Our experiments

with real-world traffic datasets demonstrate that the proposed

models precisely infer fine-grained traffic volumes. We find

that our proposed method achieves a low prediction error

outperforming existing network traffic matrix interpolation

techniques and state-of-art ML/DL predictors.
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