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Abstract— Network measurement and telemetry techniques
are central to the management of modern computer networks.
Traffic matrices estimation is a popular technique that supports
several applications. Existing approaches use statistical methods
which often make invalid assumptions about the structure of the
traffic matrix. Data-driven methods, instead, leverage detailed
information about the network topology that may be unavailable
or impractical to collect. In this work, we propose a super-
resolution technique for traffic matrix estimation that can infer
fine-grained network traffic. In our experiment, we demonstrate
that the proposed approach with high precision outperforms
existing data interpolation techniques. We also expand our design
by employing a federated learning model to address scalability
and improve performance. Such a model increases the accuracy
of our inference with respect to its centralized counterpart,
significantly lowering the number of training epochs.

Index Terms—traffic estimation, super resolution, deep learn-
ing, federated learning

I. INTRODUCTION

The improvement of computer network efficiency, once low-

hanging fruits have been harvested, necessarily passes through

advanced analytic and non-trivial timely troubleshooting. Col-

lecting the right amount of traffic at the right time is, however,

a challenging operation, given the scale of today’s networks

and the “hidden” network spots. The analysis of network traffic

data to obtain insights about the behavior of a distributed

system is an important area of study. There are numerous

methods for developing network models, but there are great

difficulties and cost in the measurement of network traffic.

Much of this difficulty comes from a large number of nodes

at which traffic must be measured, as well as the amount of

data that must be collected.

Many aspects of the Internet are characterized by decreas-

ing visibility of important network properties, which is in

tension with the Internet’s role as critical infrastructure [1].

Researchers have sought out ways to infer network patterns

from the least amount of data stored and collected [2],

sometimes because such data is not available, since, before the

(performance) problem arose, the frequency of measurements

was kept low.

A goal of this work is to explore how a computer vision

technique called super-resolution can help infer visibility

during network monitoring and telemetry operations of a

distributed system. In particular, we focus on the inference

of fine-grain network traffic details only using aggregate

measurements.
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Fig. 1: Image Super-Resolution (ISR) problem (top) and

proposed Traffic Matrix Super-Resolution (TMSR) technique

(bottom). Generative methods such as Super-Resolution can be

effectively used even in network measurements to cope with

missing values and data amputations.

In our approach, we consider a Low Resolution (LR) traffic

matrix, represented as a heat-map. Using a Super-Resolution

(SR) technique, we can reconstruct a more accurate, i.e.,

High Resolution (HR) representation of the traffic we would

have seen on a given subnetwork, with the smallest possible

inference error. To do so, we first use a supervised learning

approach, training a deep neural network with several high-

resolution traffic matrices and their low-resolution counter-

parts. Then, we use the trained neural network to infer the

high-resolution traffic matrix when only its low-resolution

version is available.

The surprising result that we present is based on the

intuition that despite the lack of clear data proximity fea-

tures present in previous work using super-resolution, visual

representations resembling traffic matrices still preserve key

properties that we can exploit in a traffic inference prob-

lem. We apply super-resolution to network traffic matrices,

proposing an algorithm that we call Traffic Matrix Super-

Resolution (TMSR). In Figure 1, we illustrate an example of

super-resolution when applied to a standard image (example

from the DIV2K dataset [3]) and a pixel representation of the



traffic matrix of a real network [4].

Federated learning to scale the training process and to

improve traffic inference performance. Converting traffic

matrices to images may be practical in some cases; however,

in wide-area networks, large data transfers, and privacy data

sharing constraints may render this approach impractical.

For example, some service or content distribution network

providers have customers that are unwilling or incapable

of sharing their network measurement data. In those cases,

moving the deep learning model where the data is located may

be preferable when feasible. While existing work has shown

that federation alone is insufficient to guarantee privacy [5] to

improve our traffic inference performance and accelerate the

training process, (and so not to improve privacy) we exploit

federated learning [6]. Aside from allowing a neural network

to be trained by sending copies of it where data resides (as

opposed to sending the data to the model), federated learning

techniques are also valuable as they avoid the transfer of

large amounts of traffic data collected by various measurement

sites. By sending only model updates rather than the entire

dataset, federated learning may reduce training communica-

tion rounds by orders of magnitude compared to centralized

learning. We analyze the benefits of training our traffic matrix

super-resolution model via federated learning. Our evaluation

using real traces confirms the effectiveness of our approach

to improve the accuracy performance compared to super-

resolution models trained in a centralized way. Surprisingly,

we also obtained better traffic inference accuracy results with

a significantly lower number of training epochs.

The rest of the paper is organized as follows: Section II dis-

cusses the related work; in Section III we formulate the traffic

matrix super-resolution (TMSR) problem, starting from the

traffic matrix inference problem. In Section IV we detail our

neural network model and its federated learning counterpart. In

Section V we describe our data preparation methodology, that

is, the process of collecting, analyzing, and augmenting the

traffic matrices generated from the traffic measurement. In Sec-

tion ?? we describe our experimental setting. In Section VI we

discuss our evaluation results, showing the benefits obtained

through the data preparation process, and the results achieved

after training our traffic matrices super-resolution model both

in a centralized and federated fashion. Finally, in Section VII

we present our conclusion.

II. RELATED WORK

In this section, we cite a few representative solutions on key

areas related to our project: traffic inference methods, super-

resolution techniques, and federated learning.

Traffic Inference and Telemetry. Being able to infer which

are the routes that pass through the network of an operator

is a complex but profitable task, with applications to traffic

engineering, performance analysis, capacity planning, traffic

loads change and its causes, network security, and business

intelligence.

Related work in this area can be divided into two main cat-

egories: those that consider a TM a purely-spacial concept [7],

[8] and those for which a TM is a time series of TMs [9], [10].

The latter approach implies a strong correlation between TMs

over time. These data are low effective rank, as shown in [9],

i.e., there are strong correlations between columns (or rows),

such that a measured TM can be approximated by a matrix

having a relatively small rank. The results of the methods

using these low-rank data show a strong dependence on this

temporal correlation. However, spatiotemporal compressive

sensing cannot work with the highly non-linear relationships

between high- and low-resolution network traffic samples, as

they expect that linear relationships subsist between sparse

traffic and inference matrices. Similar to the approach adopted

by [11], in our work, a TM element to be estimated is never

visible over time, and so past history is less useful. However,

many of the proposed traffic inference methods require the

collection and analysis of fine-grained traffic matrices, as

well as detailed information on the topology and structure

of the network under consideration. Our method is able to

overcome these limitations. During the training phase of our

super-resolution algorithm, we learn the mapping between

low-resolution matrices and their high-resolution counterpart.

This training procedure allows us to infer information about

network topology, which is needed for the super-resolution

task and hence for the traffic-matrix estimation.

Super-resolution Techniques. Super-resolution is a genera-

tive process that represents a fundamental tool for a wide range

of real-world applications, such as medical imaging, security,

surveillance, and other computer vision tasks. Super-resolution

approaches learn mapping functions from low-resolution (LR)

images to high-resolution (HR) images from a large number

of examples.

The first super-resolution algorithm was proposed by Dong

et al. [12], overcoming the state-of-art image reconstruction

accuracy.

The architecture on which the proposed EDTMSR model

is based is the Enhanced Deep Super-Resolution [13] (EDSR)

network, which removes unnecessary modules from conven-

tional ResNet architecture and employs residual scaling tech-

niques to train large models more stably.

Nonetheless, we are not the first to apply SR to computer

networks. ZipNet-GAN [14] used mobile network traffic maps

on a city scale and applied super-resolution to learn the

telecommunication power patterns from fewer measurement

probes. ZipNet-GAN utilized super-resolution in networking

for the creation of physical mobile network matrices, charac-

terized by the presence of a spatial relationship between the

cells of the matrices themselves.

Our work, on the other hand, focuses on the traffic ma-

trices generated within any network. Given the nature of

Internet traffic flows, these traffic matrices lack physical loca-

tion association. We created a location-independent network

traffic inference method. Furthermore, we trained the pro-

posed EDTMSR model both in a centralized and distributed

way, with federated learning. Using such distribute learning

paradigm, we are able to show that by following specific

data distribution strategies among the various clients, the



model trained outperforms the results obtained with traditional

centralized learning.

We conduct experiments to show how our model trained

via federated learning is robust to the varying participation

of federated clients in the training process, and that the model

trained with federated learning is able to outperform the results

obtainable with the traditional centralized training methods.

III. PROBLEM DEFINITION

In this section, we formulate the Traffic Matrix Inference

and TMSR problems. The former problem can be described

as the task of inferring traffic between all origin-destination

pairs in a given network, despite a lack of a complete dataset.

The related TMSR problem instead entails applying super-

resolution methods on traffic matrices to infer fine-grained

network traffic data from sets of coarse-grained network

measurements. While training our super-resolution model,

we learn how to map coarse-grain traffic matrices to their

high-resolution counterparts, grasp information about network

topology, and improve the accuracy of traffic estimation.

Traffic Matrix Inference: Notations and Setup. The

element M(i, j) of a TM describes the volume of traffic,

expressed in bytes, packets, or flows, measured between source

i and destination j. We express a TM as a 2-dimensional

array M ∈ R
N × R

N , where N is the number of nodes

in the network. Usually with M(i, j; t) we denote the traffic

from node i to j, averaged over the time interval [t, t+∆t).
In this work, we consider traffic snapshots omitting the time

dependency. We consider router-level ingress-egress TMs, in

which M(i, j) represents the traffic from router i to router j,

hereinafter also referred to as TMi,j .

Traffic Matrix Super-Resolution. The objective of the

Traffic Matrix Super-Resolution (TMSR) problem is to infer

fine-grained network traffic data, using as a starting point sets

of coarse-grained measurements collected in the network. The

low-resolution (LR) traffic matrix TMLR can be defined as

the output of a degradation process:

TMLR = D(TMHR; δ), (1)

where D is a degradation mapping function, TMHR is the

High-Resolution (HR) traffic matrix and δ denotes the param-

eters of the degradation process, e.g., the noise or scale factor.

Generally, in a super-resolution (SR) problem setting, D and

δ are unknown and the LR traffic matrix represents the only

input. The goal is to recover an approximation T̂M
HR

of the

ground truth HR traffic matrix, denoted as TMHR, starting

from its LR version TMLR:

T̂M
HR

= F (TMLR; θ), (2)

where F is the super-resolution model and θ represents its

parameter vector. The recovered HR traffic matrix T̂M
HR

is

also denoted as super-resolved traffic matrix TMSR. We can

directly model the degradation function as a single downsam-

pling operation:

D(TMHR; δ) = (TMHR) ↓s, s ⊂ δ, (3)

where ↓s is the downsampling operation associated with

the scale factor s. The most commonly used downsampling

operation, which is also the one we use in this paper, is

the bicubic interpolation [15]. The goal of interpolation is

to estimate values at unknown points using known data. In

particular, bicubic interpolation is a technique commonly used

in image processing to perform image resizing, which consists

of increasing or decreasing the resolution, i.e., the total number

of pixels of an image, obtaining an HR image from its LR

version, or vice-versa.

The Traffic Matrix Super-Resolution (TMSR) problem is

hence modeled by the following optimization:

θ̂ = argmin
θ

L(T̂M
HR

, TMHR) + λΦ(θ), (4)

where L(T̂M
HR

, TMHR) is the loss function between the

predicted HR traffic matrix T̂M
HR

and the ground truth traffic

matrix TMHR, Φ(θ) is a regularization term and λ is the

trade-off parameter.

We adopt the mean absolute error (MAE) loss function

to measure the quality of our super-resolution traffic matrix

inference and to train our proposed EDTMSR neural network

model, which architecture is detailed in the following section.

IV. OUR SOLUTION: SUPER-RESOLUTION FOR TRAFFIC

MATRIX INFERENCE

In this section, we describe the Enhanced Deep Traffic Ma-

trix Super-Resolution Network (EDTMSR), the deep learning

model that we propose to solve the TMSR problem. We also

explain the training process of EDTMSR through federated

learning.

In general, the architecture of a Convolutional Neural Net-

work is defined by the number of layers, also called depth, and

the number of feature channels for each convolutional layer,

also called width or F . We developed our EDSR variant for

traffic matrices by setting F = 64, whereas the depth depends

on the number of residual blocks RB stacked, which we set

to 8, and on the value of the scale factor s considered.

In particular, our approach is based on the EDSR [13] deep

learning architecture, to carry out the super-resolution of traffic

matrices, defining what we called EDTMSR.

A. Federated Learning for Performance and Partial Traffic

Visibility

In this section, we describe our design choice of training our

EDTMSR with Federated Learning (FL). Training a neural

network with a federated approach allows each client to

perform traffic measurements according to different criteria

and with arbitrary sampling rates. Moreover, as compared

to a centralized approach we obtain savings in terms of

communication costs and in the number of epochs necessary

to complete the training process (Sec. VI-C).

Provided that we train our EDTMSR with a federated

learning approach, we are to decide how to divide our dataset

among clients participating in the training process. We explore

two possible federated training configurations, and we will



refer to them as Federated for Performance and Federated for

Partial Traffic Visibility, respectively. As the name suggests,

the first has as its main objective the performance improvement

of the SR model accuracy. The second has the objective of

providing a client with visibility on the network traffic while

still maintaining acceptable SR accuracy. Both solutions use

FedAvg [6] as a federated learning algorithm to train a more

robust and performing model. The following sections describe

in detail the characteristics of both configurations.

Federated Learning to Boost Performance. In this con-

figuration, we assume that all clients participating in the

federated training process can observe and measure the traffic

of all nodes of the network. We distributed the traffic ma-

trices equally among the various clients, but at random. A

consequence of such random splitting of traffic matrices is

that the distribution of traffic patterns on each client training

set may be unbalanced. In the evaluation section, we show that

such unbalance distribution does not hinder the performance of

our traffic inference. One of the characteristics that distinguish

the federated learning technique is the variability of clients’

participation in the training process. During each training

round, only a random subset of the clients participate.

Federated Learning with Partial Traffic Visibility. In

this configuration, we remove the assumption that all clients

participating in the federated training process can observe and

measure the traffic of all nodes of the network. This is because

clients belonging to different network partitions or regions may

be unable to obtain such information but still be interested in

estimating traffic volumes. With this configuration, we aim

at assessing to what extent the distributed training approach

enables visibility gains into the network traffic of other clients,

despite the lack of global knowledge on traffic matrices. By

limiting visibility to only a sub-portion of the entire network,

each federated client will have to monitor, aggregate, and

process a smaller amount of data. To reproduce the concept of

partial visibility of network traffic, we have divided each traffic

matrix into four non-overlapping, or partially overlapping sub-

matrices.

V. DATA PROCESSING AND METHODOLOGY

In this section, we describe the process of collecting,

processing, and augmenting the traffic matrices that make up

the real-world dataset we use in our experiments.

A. Dataset Description and Pre-Processing

In this section, we describe all the details of the traffic

dataset we used to train our EDTMSR architecture. Deep

Learning (DL) techniques require extensive and representative

data to build an effective neural network model, characterized

by both high performances in terms of training time and

accuracy in the reconstruction of TMs.

In this work, we utilized a dataset collected from

GEANT [4], a research and educational European network.

This anonymized dataset consist of 10, 772 traffic matrices

built using Interior gateway protocol (IGP) routing informa-

tion, NetFlow data collected overall edge links, and Border

Gateway Protocol (BGP) routing information of the GÉANT

network sampled every 15 minutes for 4 months. The network

in which the traffic matrices were collected is formed by 23
nodes. The value (i, j) of a traffic matrix corresponds to the

traffic going from node i to node j, expressed in Kbit. To

increase the size of the dataset, we use a data augmentation

technique described in the following section.

B. Data Augmentation and Downsampling

In this section, we detail how the datasets used in the train-

ing, validation, and testing phase of the proposed EDTMSR

model were constructed, with an in-depth analysis of the

process of generating low-resolution traffic matrices starting

from their high-resolution version.

Starting from the original 10, 772 traffic matrices of

the GÉANT dataset [4], we decided to split the data

in train/valid/test according to the commonly used ratio

80/10/10.

We increase the size of the training set by applying a sliding

window over each traffic matrix. Unless explicitly indicated

otherwise, the data and plots shown refer to traffic matrices

obtained through a sliding window with a size of 18 × 18,

which proved to be sufficient to produce enough training

samples. This procedure yields 36 training samples from each

traffic matrix, increasing the overall size to 310, 248 TMs.

These samples serve as the HR ground truth, from which we

extract the LR matrices that will be utilized to train our Super-

Resolution neural network.

1) Low-Resolution Traffic Matrices via Bicubic Downsam-

pling: Using well-known downgrade functions, we can obtain

LR traffic matrices from their HR version, creating a large

training dataset used by our self-supervised learning algo-

rithm. To generate LR traffic matrices in the TMs processing

pipelines, we used bicubic downsampling [15], a known down-

grade function. We also used various scale factors s to analyze

the performance of our model as the resolution of the traffic

matrices varies. The size of the TMs of our datasets, having

side 23 × 23, has limited the range of possible testable scale

factors. More specifically, we used scale factors s = {2, 3, 6},

hereinafter also referred to as ×2, ×3, and ×6, respectively.

VI. EVALUATION RESULTS

In this section, we evaluate the TM inference using fed-

erated learning. We then dissect the benefits of our deep

learning model over an SR obtained with algebraic inference.

We evaluate the performance obtained after training our traffic

matrices super-resolution model both in a centralized way

and using federated learning. All results shown are obtained

averaging on our test set consisting of 1077 TMs, unless

otherwise stated.

A. Evaluating TM Inference with Federated Learning

Depending on the federated training configuration used

to train our EDTMSR model (defined in Section IV-A),

we use the notation EDTMSR-PERF and EDTMSR-PTV, to

indicate the model trained in the FL for Performance and FL

for Partial Traffic Visibility configuration, respectively. Each



Fig. 2: Traffic Matrix inference accuracy comparison of the proposed EDTMSR trained both centralized (only 1 client) and

federated (from 2 to 20 clients), in terms of mean absolute error (MAE). We consider three scale factors instances (different

color bars).

configuration is characterized by a “key parameter” of the

federated training process that determines the characteristics of

the distributed environment in which our EDTMSR model is

trained. In the case of FL for Performance, the key parameter

is the number NC of clients participating in the distributed

training process. Instead, in FL for Partial Traffic Visibility,

the key parameter indicates how sub-matrices are obtained

from the original TMs and how these are distributed among

the federated clients. For both configurations, we conducted

experiments aimed at determining the EDTMSR-PERF and

EDTMSR-PTV models that produced the best results for all

the considered evaluation metrics.

1) TM Inference Accuracy with EDTMSR-PERF: The pur-

pose of this experiment is to determine the optimal number of

federated clients that we should use to distribute the training

of our EDTMSR model to obtain the best results in terms of

inference accuracy for our TMs.

We have distributed the training of our model to several

clients ranging from a minimum of 2 to a maximum of 20,

for a total of 19 EDTMSR-PERF models. We denote with

EDTMSR-PERF-NC, with NC ∈ [02, 20], the model that

has been trained by NC federated clients. For each model,

we trained 3 instances associated with the scale factors ×2,

×3, and ×6. As we can see from Figures 2, the models trained

by 16, 19, and 20 clients are those that have produced the best

results for the scale factors ×2, ×6, and ×3, respectively.

Figure 2 also shows that, regardless of the number of clients,

the federated model always outperforms the performance of

the centralized model. We number the take-home messages of

our evaluation. (1) We found that the performance improve-

ment decreases as the number of federated clients increases,

suggesting a decreasing marginal gain. In particular, increas-

ing from 1 to 10 clients, there is a continuous decrease in the

value of the MAE, with a significant improvement of 20.8%.

Beyond 10 clients, the value of the MAE remains almost

stable, and in some cases, it even slightly returns to increase.

B. Algebraic Inference vs Deep Learning

In this experiment set, we assess if the TMSR problem

can be solved, with acceptable accuracy, without using a

Fig. 3: Comparison of inference accuracy between the ex-

isting Bicubic interpolation SR technique and the proposed

EDTMSR in its centralized, federated for partial traffic

visibility (EDTMSR-PTV) and federated for performance

(EDTMSR-PERF) variants, in terms of MAE.

Fig. 4: Trend of the loss function during the training phase

with a scale factor x6. The proposed EDTMSR in its cen-

tralized version (EDTMSR-C) is compared with its federated

counterpart distributed over 20 clients (EDTMSR-PERF-20).

deep learning architecture. To do so, we compare the pro-

posed centralized and federated architectures with an alge-

braic super-resolution method: the bicubic interpolation. In

particular, we compare the TM inference accuracy perfor-

mance of the bicubic interpolation algorithm, the central-

ized EDTMSR, EDTMSR-PTV-00, EDTMSR-PTV-50, and

EDTMSR-PERF-20 models. These models turned out to be

the most performant for the federated learning configurations

we have investigated. We have chosen the EDTMSR-PTV

models with 0% overlap and 52% overlap to analyze two

extreme cases. On the one hand, there is a complete absence

of visibility on the internal traffic of other clients’ subnets,



since there is traffic visibility overlap across clients. On the

other hand, each client has at most a 50% visibility on the

internal traffic flows of the other clients’ subnets.

Figure 3 shows the values of the evaluation metrics mea-

sured on the aforementioned models. As we can see, the

centralized version of the EDTMSR model overcomes the

performance of the bicubic interpolation. We obtain an im-

provement of MAE of 84%.

These results, although already significant, are further im-

proved by the federated approach, which allows us to obtain

an overall improvement of 86.6% of MAE compared to the

bicubic method. The EDTMSR-PERF-20 model is the one

that obtained the smallest MAE value among all the models

compared and for all the scale factors considered. We can

hence conclude that (8) both EDTMSR-PTV models outper-

form the performance of the bicubic method and demonstrate

the validity of the proposed architecture even in contexts of

partial visibility on the traffic flows inside the network.

C. Scale Factor Impact on SR Accuracy

In this experiment, we compare the statistical distribution of

the evaluation metric values measured on each of the models.

In particular, Figure 4 shows the comparison between the trend

of the loss function, a measure of the model accuracy, during

the training phase of the EDTMSR and EDTMSR-PERF-20

models with a scale factor ×6. Results show that the federated

model outperforms the centralized counterpart after only two

training rounds. Moreover, note how the trend of the loss

function of the federated model is much smoother.

(12) The federated model achieves the same performance as

the centralized model after 80% fewer training rounds/epochs.

(13) Finally, our results show that training a deep learning

architecture to solve the TMSR problem yields a significant

improvement compared to the bicubic method both in terms

of prediction error and structural fidelity of the inference of

fine-grained traffic patterns.

VII. CONCLUSION

In this work we proposed the use of a computer vision

technique known as super-resolution to infer network traffic

volumes with fine granularity. We presented the design of

the Enhanced Deep Traffic Matrix Super-Resolution Network

(EDTMSR), a neural network architecture built to perform

super-resolution on traffic matrices. To address scalability and

boost performance, we also expanded our design by employing

federated learning and measuring the performance of a few

representative distributed learning policies.

Our evaluation showed that the proposed method reduces

the prediction error (MAE) of existing interpolation super-

resolution approaches by 87%, and achieves up to 69% higher

fidelity (PSNR) and 3.4× greater structural similarity (SSIM).

Furthermore, the federated learning approach allowed us to

achieve the same results as the centralized model but per-

formed 80% fewer model training rounds.
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